The Genetic Transformation of Sweet Orange (Citrus sinensis L. Osbeck) for Enhanced Resistance to Citrus Canker

  • Lorena Noelia Sendin
  • María Paula FilipponeEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1864)


Developing disease resistance is one of the most important components of any plant breeding program. Citrus traditional breeding methods (bud sport selection, crossbreeding, and other breeding channels) are a laborious task and often hampered by long juvenility, a high degree of heterozygosity, polyembryony, self-incompatibility, and abortion of reproductive organs. An interesting alternative to the classical breeding approach is the use of genetic transformation, which provides the means for adding a single agronomic trait to a plant without otherwise altering its phenotype. Agrobacterium tumefaciens-mediated transformation has been carried out with numerous hybrids and citrus species. This technique allowed us to introduce the Bs2 gene in Citrus, as well as to increase citrus canker resistance in transgenic Bs2 gene-expressing lines.

Key words

Citrus breeding A. tumefaciens Shoot regeneration In vitro grafting Acclimatization 



This project was supported by Estación Experimental Agroindustrial Obispo Colombres (EEAOC) and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET).


  1. 1.
    Rejeb I, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3:458–475. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sultanova N, Huseynova I, Mammadov A et al (2014) Biotic stress and crop improvement. Improv Crop Era Clim Chang. Google Scholar
  3. 3.
    Bové JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol 88:7–37. CrossRefGoogle Scholar
  4. 4.
    Schaad NW, Postnikova E, Lacy GH et al (2005) Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1915) Dye 1978 forms A, B/C/D, and E. Syst Appl Microbiol 28:494–518. CrossRefPubMedGoogle Scholar
  5. 5.
    Brunings AM, Gabriel DW (2003) Xanthomonas citri: breaking the surface. Mol Plant Pathol 4:141–157. CrossRefPubMedGoogle Scholar
  6. 6.
    Koh E-J, Zhou L, Williams DS et al (2011) Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with “Candidatus Liberibacter asiaticus.”. Protoplasma 249:687. CrossRefPubMedGoogle Scholar
  7. 7.
    Grosser JW, Gmitter FG Jr (1990) Protoplast fusion and citrus improvement. Plant Breed Rev 8:339–374Google Scholar
  8. 8.
    Deng X, Duan Y (2006) Modification of perennial fruit trees BT – tree transgenesis: recent developments. In: Fladung M, Ewald D (eds) . Springer, Berlin, Heidelberg, pp 47–66Google Scholar
  9. 9.
    Donmez D, Simsek O, Izgu T et al (2013) Genetic transformation in citrus. Sci World J 2013:1. CrossRefGoogle Scholar
  10. 10.
    Luth D, Moore G (1999) Transgenic grapefruit plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell Tissue Organ Cult 57:219–222. CrossRefGoogle Scholar
  11. 11.
    Dominguez A, Guerri J, Cambra M et al (2000) Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 19:427–433CrossRefGoogle Scholar
  12. 12.
    Peña L, Pérez RM, Cervera M et al (2004) Early events in agrobacterium-mediated genetic transformation of citrus explants. Ann Bot 94:67–74. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dutt M, Barthe G, Irey M, Grosser J (2015) Transgenic citrus expressing an arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; Citrus greening). PLoS One 10:e0137134. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fagoaga C, López C, De Mendoza AH et al (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol 60:153–165. CrossRefPubMedGoogle Scholar
  15. 15.
    Zanek MC, Reyes CA, Cervera M et al (2008) Genetic transformation of sweet orange with the coat protein gene of Citrus psorosis virus and evaluation of resistance against the virus. Plant Cell Rep 27:57–66. CrossRefPubMedGoogle Scholar
  16. 16.
    Çevik B, Lee RF, Niblett CL (2006) Genetic transformation of Citrus paradisi with antisense and untranslatable RNA-dependent RNA polymerase genes of Citrus tristeza closterovirus. Turkish J Agric For 30:173–182Google Scholar
  17. 17.
    Boscariol RL, Monteiro M, Takahashi EK et al (2006) Attaching A gene from trichoplusia ni reduces susceptibility to Xanthomonas axonopodis pv. citri in Transgenic Citrus sinensis ‘Hamlin’. J Am Soc Hortic Sci 131:530–536Google Scholar
  18. 18.
    Omar AA, Song WY, Grosser JW (2007) Introduction of Xa21, a Xanthomonas-resistance, gene from rice, into “Hamlin” sweet orange [Citrus sinensis (L.) Osbeck] using protoplast- GFP co-transformation or single plasmid transformation. J Hortic Sci Biotechnol 82:914–923CrossRefGoogle Scholar
  19. 19.
    Yang L, Hu C, Li N et al (2011) Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease. Plant Mol Biol 75:11–23CrossRefGoogle Scholar
  20. 20.
    Zhang X, Francis MI, Dawson WO et al (2010) Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker. Eur J Plant Pathol 128:91–100. CrossRefGoogle Scholar
  21. 21.
    Tai TH, Dahlbeck D, Clark ET et al (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci U S A 96:14153–14158. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sendín LN, Orce IG, Gómez RL et al (2017) Inducible expression of Bs2 R gene from Capsicum chacoense in sweet orange (Citrus sinensis L. Osbeck) confers enhanced resistance to citrus canker disease. Plant Mol Biol 93:607–621. CrossRefPubMedGoogle Scholar
  23. 23.
    Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218. CrossRefGoogle Scholar
  24. 24.
    Barbosa-Mendes JM, de Filho F AAM, Filho AB et al (2009) Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylovora and evaluation of the transgenic lines for resistance to citrus canker. Sci Hortic (Amsterdam) 122:109–115. CrossRefGoogle Scholar
  25. 25.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. CrossRefGoogle Scholar
  26. 26.
    Pena L, Cervera M, Juárez J et al (1995) High efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Sci 104:183–191. CrossRefGoogle Scholar
  27. 27.
    McGarvey P, Kaper JM (1991) A simple and rapid method for screening transgenic plants using the PCR. BioTechniques 11:428–432PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lorena Noelia Sendin
    • 1
  • María Paula Filippone
    • 1
    Email author
  1. 1.Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), EEAOC-CONICETLas TalitasArgentina

Personalised recommendations