Advertisement

Imaging Cytonemes in Drosophila Embryos

  • Lijuan Du
  • Sougata Roy
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1863)

Abstract

Conserved morphogenetic signaling proteins disperse across tissues to generate signal and signaling gradients, which in turn are considered to assign positional coordinates to the recipient cells. Recent imaging studies in Drosophila model have provided evidence for a “direct-delivery” mechanism of signal dispersion that is mediated by specialized actin-rich signaling filopodia, named cytonemes. Cytonemes establish contact between the signal-producing and target cells to directly exchange and transport the morphogenetic proteins. Although an increasing amount of evidence supports the critical role of these specialized signaling structures, imaging these highly dynamic 200 nm-thin structures in the complex three-dimensional contour of living tissues is challenging. Here, we describe the imaging methods that we optimized for studying cytonemes in Drosophila embryos.

Key words

Cytonemes Cell–cell signaling Morphogen Drosophila Embryo Filopodia Trachea Engrailed Breathless 

Notes

Acknowledgments

We thank Dr. T.B. Kornberg and the Bloomington Stock Center for reagents, colleagues and lab members, especially Alex Sohr for reading the manuscript and valuable suggestions, UMD Imaging core facility, and Dr. A.E. Beaven for assistance in the imaging core. Funding from NIH: R00HL114867 and R35GM124878 to S.R.

References

  1. 1.
    Entchev EV, Schwabedissen A, González-Gaitán M (2000) Gradient formation of the TGF-β Homolog Dpp. Cell 103:981–992.  https://doi.org/10.1016/S0092-8674(00)00200-2CrossRefGoogle Scholar
  2. 2.
    Teleman AA, Cohen SM (2000) Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103:971–980CrossRefGoogle Scholar
  3. 3.
    Goentoro LA, Reeves GT, Kowal CP et al (2006) Quantifying the Gurken morphogen gradient in Drosophila oogenesis. Dev Cell 11:263–272.  https://doi.org/10.1016/j.devcel.2006.07.004CrossRefGoogle Scholar
  4. 4.
    Strigini M, Cohen SM (2000) Wingless gradient formation in the Drosophila wing. Curr Biol 10:293–300CrossRefGoogle Scholar
  5. 5.
    Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47CrossRefGoogle Scholar
  6. 6.
    Rogers KW, Schier AF (2011) Morphogen gradients: from generation to interpretation. Annu Rev Cell Dev Biol 27:377–407.  https://doi.org/10.1146/annurev-cellbio-092910-154148CrossRefGoogle Scholar
  7. 7.
    Wolpert L (2016) Positional information and pattern formation. Curr Top Dev Biol 117:597–608.  https://doi.org/10.1016/bs.ctdb.2015.11.008CrossRefGoogle Scholar
  8. 8.
    Müller P, Rogers KW, Yu SR et al (2013) Morphogen transport. Development 140:1621–1638.  https://doi.org/10.1242/dev.083519CrossRefGoogle Scholar
  9. 9.
    Christian JL (2012) Morphogen gradients in development: from form to function. Wiley Interdiscip Rev Dev Biol 1:3–15.  https://doi.org/10.1002/wdev.2CrossRefGoogle Scholar
  10. 10.
    Schwank G, Dalessi S, Yang S-F et al (2011) Formation of the long range Dpp morphogen gradient. PLoS Biol 9:e1001111.  https://doi.org/10.1371/journal.pbio.1001111CrossRefGoogle Scholar
  11. 11.
    Zhou S, Lo W-C, Suhalim JL et al (2012) Free extracellular diffusion creates the Dpp morphogen gradient of the Drosophila wing disc. Curr Biol 22:668–675.  https://doi.org/10.1016/j.cub.2012.02.065CrossRefGoogle Scholar
  12. 12.
    Yu SR, Burkhardt M, Nowak M et al (2009) Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461:533–536.  https://doi.org/10.1038/nature08391CrossRefGoogle Scholar
  13. 13.
    Dubrulle J, Pourquié O (2004) fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 427:419–422.  https://doi.org/10.1038/nature02216CrossRefGoogle Scholar
  14. 14.
    Shilo B-Z, Haskel-Ittah M, Ben-Zvi D et al (2013) Creating gradients by morphogen shuttling. Trends Genet 29:339–347.  https://doi.org/10.1016/j.tig.2013.01.001CrossRefGoogle Scholar
  15. 15.
    Entchev EV, Schwabedissen A, Gonzalez-Gaitan M (2000) Gradient formation of the TGF-beta homolog Dpp. Cell 103:981–991CrossRefGoogle Scholar
  16. 16.
    Belenkaya TY, Han C, Yan D et al (2004) Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans. Cell 119:231–244.  https://doi.org/10.1016/j.cell.2004.09.031CrossRefGoogle Scholar
  17. 17.
    Kornberg TB, Roy S (2014) Cytonemes as specialized signaling filopodia. Development 141:729–736.  https://doi.org/10.1242/dev.086223CrossRefGoogle Scholar
  18. 18.
    Kornberg TB (2017) Distributing signaling proteins in space and time: the province of cytonemes. Curr Opin Genet Dev 45:22–27.  https://doi.org/10.1016/j.gde.2017.02.010CrossRefGoogle Scholar
  19. 19.
    Ramírez-Weber FA, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97:599–607CrossRefGoogle Scholar
  20. 20.
    Hsiung F, Ramirez-Weber F-A, Iwaki DD, Kornberg TB (2005) Dependence of Drosophila wing imaginal disc cytonemes on decapentaplegic. Nature 437:560–563.  https://doi.org/10.1038/nature03951CrossRefGoogle Scholar
  21. 21.
    Roy S, Hsiung F, Kornberg TB (2011) Specificity of Drosophila cytonemes for distinct signaling pathways. Science 332:354–358.  https://doi.org/10.1126/science.1198949CrossRefGoogle Scholar
  22. 22.
    Sato M, Kornberg TB (2002) FGF is an essential mitogen and chemoattractant for the air sacs of the drosophila tracheal system. Dev Cell 3:195–207CrossRefGoogle Scholar
  23. 23.
    Roy S, Huang H, Liu S, Kornberg TB (2014) Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein. Science 343:1244624–1244624.  https://doi.org/10.1126/science.1244624CrossRefGoogle Scholar
  24. 24.
    Huang H, Kornberg TB (2016) Cells must express components of the planar cell polarity system and extracellular matrix to support cytonemes. elife 5:197.  https://doi.org/10.7554/eLife.18979CrossRefGoogle Scholar
  25. 25.
    Roy S, Kornberg TB (2011) Direct delivery mechanisms of morphogen dispersion. Sci Signal 4:pt8.  https://doi.org/10.1126/scisignal.2002434CrossRefGoogle Scholar
  26. 26.
    Rojas-Rios P, Guerrero I, Gonzalez-Reyes A (2012) Cytoneme-mediated delivery of hedgehog regulates the expression of bone morphogenetic proteins to maintain Germline stem cells in Drosophila. PLoS Biol 10:e1001298–e1001213.  https://doi.org/10.1371/journal.pbio.1001298CrossRefGoogle Scholar
  27. 27.
    Roy S, Kornberg TB (2015) Paracrine signaling mediated at cell-cell contacts. BioEssays 37:25–33.  https://doi.org/10.1002/bies.201400122CrossRefGoogle Scholar
  28. 28.
    Kornberg TB (2014) Cytonemes and the dispersion of morphogens. Wiley Interdiscip Rev Dev Biol 3:445–463.  https://doi.org/10.1002/wdev.151CrossRefGoogle Scholar
  29. 29.
    Du L, Sohr A, Ge Y, et al (2018) Feedback regulation of cytoneme-mediated transport shapes a tissue-specific FGF morphogen gradient. eLife.  https://doi.org/10.7554/eLife.38137
  30. 30.
    Sanders TA, Llagostera E, Barna M (2013) Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature 497:628–632.  https://doi.org/10.1038/nature12157CrossRefGoogle Scholar
  31. 31.
    Huang H, Kornberg TB (2015) Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-notch signaling to the air sac primordium. elife 4:e06114.  https://doi.org/10.7554/eLife.06114CrossRefGoogle Scholar
  32. 32.
    Holzer T, Liffers K, Rahm K et al (2012) Live imaging of active fluorophore labelled Wnt proteins. FEBS Lett 586(11):1638–1644.  https://doi.org/10.1016/j.febslet.2012.04.035CrossRefGoogle Scholar
  33. 33.
    Stanganello E, Scholpp S (2016) Role of cytonemes in Wnt transport. J Cell Sci 129:665–672.  https://doi.org/10.1242/jcs.182469CrossRefGoogle Scholar
  34. 34.
    Buszczak M, Inaba M, Yamashita YM (2016) Signaling by cellular protrusions: keeping the conversation private. Trends Cell Biol 26:526–534.  https://doi.org/10.1016/j.tcb.2016.03.003CrossRefGoogle Scholar
  35. 35.
    Du L, Roy S (2017) Cytonemes mediate formation of a morphogen gradient of FGF during branching morphogenesis of Drosophila trachea. Mol Biol Cell 28:3727 (abstract #M37)Google Scholar
  36. 36.
    Seijo-Barandiarán I, Guerrero I, Bischoff M (2015) In vivo imaging of hedgehog transport in Drosophila epithelia. Methods Mol Biol 1322:9–18.  https://doi.org/10.1007/978-1-4939-2772-2_2CrossRefGoogle Scholar
  37. 37.
    Stocker H, Gallant P (2008) Getting started: an overview on raising and handling Drosophila. Methods Mol Biol 420:27–44.  https://doi.org/10.1007/978-1-59745-583-1_2CrossRefGoogle Scholar
  38. 38.
    Du L, Zhou A, Patel A Rao M, Anderson K, Roy S (2017) Unique patterns of organization and migration of FGF-expressing cells during Drosophila morphogenesis. Dev Biol 427:35-48.  https://doi.org/10.1016/j.ydbio.2017.05.009CrossRefGoogle Scholar
  39. 39.
    Yu D, Gustafson WC, Han C et al (2014) An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging. Nat Commun 5:3626.  https://doi.org/10.1038/ncomms4626CrossRefGoogle Scholar
  40. 40.
    Ghabrial A, Luschnig S, Metzstein MM, Krasnow MA (2003) Branching morphogenesis of the Drosophila tracheal system. Annu Rev Cell Dev Biol 19:623–647.  https://doi.org/10.1146/annurev.cellbio.19.031403.160043CrossRefGoogle Scholar
  41. 41.
    Chen W, Huang H, Hatori R, Kornberg TB (2017) Essential basal cytonemes take up hedgehog in the Drosophila wing imaginal disc. Development 144:3134–3144.  https://doi.org/10.1242/dev.149856CrossRefGoogle Scholar
  42. 42.
    Sutherland D, Samakovlis C, Krasnow MA (1996) Branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87:1091–1101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUSA

Personalised recommendations