Discrete-State Stochastic Modeling of Morphogen Gradient Formation

  • Hamid Teimouri
  • Anatoly B. Kolomeisky
Part of the Methods in Molecular Biology book series (MIMB, volume 1863)


In biological development, positional information required for pattern formation is carried by the gradients of special signaling molecules, which are called morphogens. It is well known that the establishment of the morphogen gradients is a result of complex physical-chemical processes that involve diffusion, degradation of locally produced signaling molecules, and other biochemical reactions. Here we describe a recently developed discrete-state stochastic theoretical method to explain the formation of morphogen gradients in complex cellular environment.

Key words

Morphogen gradient Local accumulation time Reaction–diffusion processes Spatially varying degradation rate Discrete-state stochastic modeling Nonlinear degradation mechanism Direct-delivery mechanism 



A.B.K. acknowledges the support from the Center for Theoretical Biological Physics (NSF Grant PHY-1427654).


  1. 1.
    Alaynick WA, Jessell TM, Pfaff SL (2011) SnapShot: spinal cord development. Cell 146:178–178.e1Google Scholar
  2. 2.
    Berezhkovskii AM (2011) Renewal theory for single-molecule systems with multiple reaction channels. J Chem Phys 134:074114Google Scholar
  3. 3.
    Berezhkovskii AM, Shvartsman SY (2011) Physical interpretation of mean local accumulation time of morphogen gradient formation. J Chem Phys 135:154115Google Scholar
  4. 4.
    Berezhkovskii AM, Shvartsman SY (2013) Kinetics of receptor occupancy during morphogen gradient formation. J Chem Phys 138:244105Google Scholar
  5. 5.
    Berezhkovskii AM, Sample C, Shvartsman SY (2010) How long does it take to establish a morphogen gradient? Biophys J 99:L59–L61Google Scholar
  6. 6.
    Berezhkovskii AM, Sample C, Shvartsman SY (2011) Formation of morphogen gradients: local accumulation time. Phys Rev E 83:051906Google Scholar
  7. 7.
    Bergmann S, Sandler O, Sberro H, Shnider S, Schejter E, Shilo B-Z, Barkai N (2007) Pre-steady-state decoding of the bicoid morphogen gradient. PLoS Biol 5:e46Google Scholar
  8. 8.
    Bischoff M, Gradilla AC, Seijo I, Andrés G, Rodríguez-Navas C, González-Méndez L, Guerrero I (2013) Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia. Nature Cell Biol 15:1269–1281Google Scholar
  9. 9.
    Bozorgui B, Teimouri H, Kolomeisky AB (2015) Theoretical analysis of degradation mechanisms in the formation of morphogen gradients. J Chem Phys 143:025102Google Scholar
  10. 10.
    Bressloff PC, Hyunjoong K (2018) Bidirectional transport model of morphogen gradient formation via cytonemes. Phys Biol 15:026010Google Scholar
  11. 11.
    Briscoe J (2009) Making a grade: Sonic Hedgehog signalling and the control of neural cell fate. EMBO J 28:457–465Google Scholar
  12. 12.
    Briscoe J, Small S (2015) Morphogen rules: design principles of gradient-mediated embryo patterning. Development 142:3996–4009Google Scholar
  13. 13.
    Castle BT, Howard SA, Odde DJ (2011) Assessment of transport mechanisms underlying the bicoid morphogen gradient. Cell Mol Bioeng 4:116–121Google Scholar
  14. 14.
    Chen Y, Struhl G (1996) Dual roles for patched in sequestering and transducing Hedgehog. Cell 87:553–563Google Scholar
  15. 15.
    Cheung D, Miles C, Kreitman M, Ma J (2014) Adaptation of the length scale and amplitude of the Bicoid gradient profile to achieve robust patterning in abnormally large Drosophila melanogaster embryos. Development 141:124–135Google Scholar
  16. 16.
    Chou T, Mallick K, Zia RKP (2011) Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport. Rep Prog Phys 74:116601Google Scholar
  17. 17.
    Cohen M, Georgiou M, Stevenson NL, Miodownik M, Baum B (2010) Dynamic filopodia transmit intermittent Delta-Notch signaling to drive pattern refinement during lateral inhibition. Dev Cell 19:78–89Google Scholar
  18. 18.
    Crick FH (1970) Diffusion in embryogenesis. Nature 225:420–421Google Scholar
  19. 19.
    Dalessi S, Neves A, Bergmann S (2012) Modeling morphogen gradient formation from arbitrary realistically shaped sources. J Theor Biol 294:130–138Google Scholar
  20. 20.
    Deng J, Wang W, Lu LJ, Ma J (2010) A Two-dimensional simulation model of the bicoid gradient in Drosophila. PLoS Biol 5:e10275Google Scholar
  21. 21.
    Derrida B, Evans MR, Hakim V, Pasquier V (1993) Exact solution of a ID asymmetric exclusion model using a matrix formulation. J Phys A 26:1493–1517Google Scholar
  22. 22.
    Dessaud E, Yang LL, Hill K, Cox B, Ulloa F, Ribeiro A, Mynett A, Novitch BG, Briscoe J (2007) Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450:717–720Google Scholar
  23. 23.
    Dilao R, Muraro D (2010) mRNA diffusion explains protein gradients in Drosophila early development. J Theor Biol 264:847–853Google Scholar
  24. 24.
    Drocco JA, Grimm O, Tank DW, Wieschaus E (2011) Measurement and perturbation of morphogen lifetime: effects on gradient shape. Biophys J 101:1807–1815Google Scholar
  25. 25.
    Drocco JA, Wieschaus EF, Tank DW (2012) The synthesis-diffusion-degradation model explains Bicoid gradient formation in unfertilized eggs. Phys Biol 9:055004Google Scholar
  26. 26.
    Eldar A, Rosin D, Shilo B-Z, Barkai N (2003) Self-enhanced ligand degradation underlies robustness of morphogen gradients. Dev Cell 5:635–646Google Scholar
  27. 27.
    Ellery AJ, Simpson MJ, McCue SW (2013) Comment on local accumulation times for source, diffusion, and degradation models in two and three dimensions. J Chem Phys 139:017101Google Scholar
  28. 28.
    England JL, Cardy J (2005) Morphogen gradient from a noisy source. Phys Rev Lett 94:078101Google Scholar
  29. 29.
    Entchev EV, Schwabedissen A, Gonzales-Gaitan M (2000) Gradient formation of the TGF-beta homolog Dpp. Cell 103:981–991Google Scholar
  30. 30.
    Fairchild CL, Barna M (2014) Specialized filopodia: at the ‘tip’ of morphogen transport and vertebrate tissue patterning. Curr Opin Genet Devel 27:67–73Google Scholar
  31. 31.
    Fedotov S, Falconer S (2014) Nonlinear degradation-enhanced transport of morphogens performing subdiffusion. Phys Rev E 89:012107Google Scholar
  32. 32.
    Gradilla A-C, Guerrero I (2013) Cytoneme-mediated cell-to-cell signaling during development. Cell Tissue Res 352:59–66Google Scholar
  33. 33.
    Gregor T, Wieschaus EF, McGregor AP, Bialek W, Tank DW (2007) Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 130:141–152Google Scholar
  34. 34.
    Grimm O, Coppy M, Wieschaus EF (2009) Modelling the bicoid gradient. Development 137:2253–2264Google Scholar
  35. 35.
    Gordon PV, Muratov CB (2012) Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Netw Heterog Media 7:767–780Google Scholar
  36. 36.
    Gordon PV, Muratov CB (2015) Eventual self-similarity of solutions for the diffusion equation with nonlinear absorption and a point source. SIAM J Math Anal 47:2903–2916Google Scholar
  37. 37.
    Gordon PV, Sample C, Berezhkovskii AM, Muratov CB, Shvartsman SY (2011) Local kinetics of morphogen gradients. Proc Natl Acad Sci USA 108:6157–6162Google Scholar
  38. 38.
    Gordon PV, Muratov CB, Shvartsman SY (2013) Local accumulation times for source, diffusion, and degradation models in two and three dimensions. J Chem Phys 138:104121Google Scholar
  39. 39.
    Guerrero I, Kornberg TB (2014) Hedgehog and its circuitous journey from producing to target cells. Seminars Cell Dev Biol 33:52–62Google Scholar
  40. 40.
    Hecht I, Rappel W-J, Levine H (2009) Determining the scale of the Bicoid morphogen gradient. Proc Natl Acad Sci USA 106:1710–1715Google Scholar
  41. 41.
    Incardona JP, Lee JH, Robertson CP, Enga K, Kapur RP, Roelink H (2000) Receptor-mediated endocytosis of soluble and membrane-tethered Sonic hedgehog by Patched-1. Proc Natl Acad Sci USA 97:12044–12049Google Scholar
  42. 42.
    Kornberg TB (2012) The imperatives of context and contour for morphogen dispersion. Biophys J 103:2252–2256Google Scholar
  43. 43.
    Kerszberg M, Wolpert L (1998) Mechanisms for positional signalling by morphogen transport: a theoretical study. J Theor Biol 191:103–114Google Scholar
  44. 44.
    Kerszberg M, Wolpert L (2007) Specifying positional information in the embryo: looking beyond morphogens. Cell 130:205–209Google Scholar
  45. 45.
    Kicheva A, Pantazis P, Bollenbach T, Kalaidzidis Y, Bittig T, Jülicher F, Gonzales-Gaitan M (2007) Kinetics of morphogen gradient formation. Science 315:521–525Google Scholar
  46. 46.
    Kicheva A, Bollenbach T, Wartlick O, Jülicher F, Gonzalez-Gaitan M (2012) Investigating the principles of morphogen gradient formation: from tissues to cells. Curr Opin Gen Dev 22:527–532Google Scholar
  47. 47.
    Kolomeisky AB (2011) Formation of a morphogen gradient: acceleration by degradation. J Phys Chem Lett 2:1502–1505Google Scholar
  48. 48.
    Kornberg TB, Roy S (2014) Communicating by touch neurons are not alone. Trends Cell Biol 24:370–376Google Scholar
  49. 49.
    Kornberg TB, Roy S (2014) Cytonemes as specialized signaling filopodia. Development 141:729–736Google Scholar
  50. 50.
    Krotov D, Dubuis JO, Gregor T, Bialek W (2014) Morphogenesis at criticality. Proc Natl Acad Sci USA 111:3683–3688Google Scholar
  51. 51.
    Lander DA (2007) Morpheus unbound: reimagining the morphogen gradient. Cell 128:245–256Google Scholar
  52. 52.
    Lipshitz HD (2009) Follow the mRNA: a new model for Bicoid gradient formation. Nature Rev Mol Cell Biol 10:509–512Google Scholar
  53. 53.
    Little SC, Tkacik G, Kneeland TB, Wieschaus EF, Gregor T (2011) The formation of the bicoid morphogen gradient requires protein movement from anteriorly localized mRNA. PLoS Biol 9:e1000596Google Scholar
  54. 54.
    Lodish H, Berk A, Kaiser C, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudaira P (2007) Molecular cell biology, 6th edn. W.H. Freeman, New YorkGoogle Scholar
  55. 55.
    Martinez-Arias A, Stewart A (2002) Molecular principles of animal development. Oxford University Press, New YorkGoogle Scholar
  56. 56.
    Medioni C, Mowry K, Bess F (2012) Principles and roles of mRNA localization in animal development. Development 139:3263–3276Google Scholar
  57. 57.
    Mogilner A, Odde D (2011) Modeling cellular processes in 3D. Trends Cell Biol 21:692–700Google Scholar
  58. 58.
    Müller P, Rogers KW, Jordan BM, Lee JS, Robson D, Ramanathan S, Schier AF (2012) Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 336:721–724Google Scholar
  59. 59.
    Müller P, Rogers KW, Yu SR, Brand M, Schier AF (2013) Morphogen transport. Development 140:1621–1638Google Scholar
  60. 60.
    Porcher A, Dostatni N (2010) The Bicoid morphogen system. Curr Biol 20:R249–R254Google Scholar
  61. 61.
    Redner S (2001) A guide to first-passage processes. Cambridge University Press, New YorkGoogle Scholar
  62. 62.
    Reingruber J, Holcman D (2014) Computational and mathematical methods for morphogenetic gradient analysis, boundary formation and axonal targeting. Seminars Cell Dev Biol 35:189–202Google Scholar
  63. 63.
    Richards DM, Saunders TE (2015) Spatiotemporal analysis of different mechanisms for interpreting morphogen gradients. Biophys J 108:2061–2073Google Scholar
  64. 64.
    Rogers KW, Schier AF (2011) Morphogen gradients: from generation to interpretation. Annu Rev Cell Dev Biol 27:377–407Google Scholar
  65. 65.
    Rørth P (2014) Reach out and touch someone. Science 343:848–849Google Scholar
  66. 66.
    Roy S, Kornberg TB (2015) Paracrine signaling mediated at cell-cell contacts. Bioessays 37:25–33Google Scholar
  67. 67.
    Sample C, Shvartsman SY (2010) Multiscale modeling of diffusion in the early Drosophila embryo. Proc Natl Acad Sci USA 107:10092–10096Google Scholar
  68. 68.
    Sanders TA, Llagostera E, Barna M (2013) Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature 497:628–632Google Scholar
  69. 69.
    Saunders T, Howard M (2009) When it pays to rush: interpreting morphogen gradients prior to steady-state. Phys Biol 6:046020Google Scholar
  70. 70.
    Sigaut L, Pearson JE, Colman-Lerner A, Dawson SP (2014) Messages do diffuse faster than messengers: Reconciling disparate estimates of the morphogen bicoid diffusion coefficient. PLoS Comp Biol 10:e1003629Google Scholar
  71. 71.
    Spirov A, Fahmy K, Schneider M, Frei E, Noll M, Baumgartner S (2009) Formation of the bicoid morphogen gradient: an mRNA gradient dictates the protein gradient. Development 136:605–614Google Scholar
  72. 72.
    Tabata T, Takei Y (2004) Morphogens, their identification and regulation. Development 131:703–712Google Scholar
  73. 73.
    Teimouri H, Kolomeisky AB (2014) Development of morphogen gradient: the role of dimension and discreteness. J Chem Phys 140:085102Google Scholar
  74. 74.
    Teimouri H, Kolomeisky AB (2015) The role of source delocalization in the development of morphogen gradients. Phys Biol 12:026006Google Scholar
  75. 75.
    Teimouri H, Kolomeisky AB (2016) New model for understanding mechanisms of biological signaling: direct transport via cytonemes. J Phys Chem Lett 7:180–185Google Scholar
  76. 76.
    Teimouri H, Bozorgui B, Kolomeisky AB (2016) Development of morphogen gradients with spatially varying degradation rates. J Phys Chem B 120:2745–2750Google Scholar
  77. 77.
    Tompkins N, Li N, Girabawe C, Heymann M, Ermentrout GB, Epstein IR, Fraden S (2013) Testing Turing’s theory of morphogenesis in chemical cells. Proc Natl Acad Sci USA 111:4397–4402Google Scholar
  78. 78.
    Tufcea DE, Francois P (2015) Critical timing without a timer for embryonic development. Biophys J 109:1724–1734Google Scholar
  79. 79.
    Wartlick O, Kicheva A, Gonzales-Gaitan M (2009) Morphogen gradient formation. Cold Spring Harb Perspect Biol 1:a001255Google Scholar
  80. 80.
    Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47Google Scholar
  81. 81.
    Wolpert L (1998) Principles of development. Oxford University Press, New YorkGoogle Scholar
  82. 82.
    Yu SR, Burkhardt M, Nowak M, Ries J, Petrasek Z, Scholpp S, Schwille P, Brand M (2009) Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461:533–536Google Scholar
  83. 83.
    Yuste SB, Abad E, Lindenberg K (2010) Reaction-subdiffusion model of morphogen gradient formation. Phys Rev E 82:061123Google Scholar
  84. 84.
    Zhou S, Lo WC, Suhalim JL, Digman MA, Grattom E, Nie Q, Lander AD (2012) Free extracellular diffusion creates the Dpp morphogen gradient of the drosophila wing disc. Curr Biol 22:668–675Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and FAS Center for Systems BiologyHarvard UniversityCambridgeUSA
  2. 2.Department of Chemistry and Center for Theoretical Biological PhysicsRice UniversityHoustonUSA

Personalised recommendations