Advertisement

LiveFly: A Toolbox for the Analysis of Transcription Dynamics in Live Drosophila Embryos

  • Huy Tran
  • Carmina Angelica Perez-Romero
  • Teresa Ferraro
  • Cécile Fradin
  • Nathalie Dostatni
  • Mathieu Coppey
  • Aleksandra M. Walczak
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1863)

Abstract

We present the LiveFly toolbox for quantitative analysis of transcription dynamics in live Drosophila embryos. The toolbox allows users to process two-color 3D confocal movies acquired using nuclei-labeling and the fluorescent RNA-tagging system described in the previous chapter and export the nuclei’s position as a function of time, their lineages and the intensity traces of the active loci. The toolbox, which is tailored for the context of Drosophila early development, is semiautomatic, and requires minimal user intervention. It also includes a tool to combine data from multiple movies and visualize several features of the intensity traces and the expression pattern.

Key words

Drosophila melanogaster Real-time monitoring Transcription dynamics Image analysis Early development 

Notes

Acknowledgments

This work was supported by a Marie Curie MCCIG grant No. 303561 (AMW), PSL IDEX REFLEX (ND, AMW, MC), ANR-11-LABX-0044 DEEP Labex (ND), ANR- 11-BSV2-0024 Axomorph (ND and AMW), and PSL ANR-10-IDEX-0001-02. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  1. 1.
    Garcia HG, Tikhonov M, Lin A, Gregor T (2013) Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning. Curr Biol 23:2140–2145.  https://doi.org/10.1016/j.cub.2013.08.054CrossRefGoogle Scholar
  2. 2.
    Lucas T, Ferraro T, Roelens B et al (2013) Live imaging of bicoid-dependent transcription in Drosophila embryos. Curr Biol 23:2135–2139.  https://doi.org/10.1016/j.cub.2013.08.053CrossRefPubMedGoogle Scholar
  3. 3.
    Fukaya T, Lim B, Levine M (2016) Enhancer control of transcriptional bursting. Cell 166:358–368.  https://doi.org/10.1016/j.cell.2016.05.025CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bothma JP, Garcia HG, Esposito E et al (2014) Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos. Proc Natl Acad Sci U S A 111:10598–10603.  https://doi.org/10.1073/pnas.1410022111CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Desponds J, Tran H, Ferraro T et al (2016) Precision of readout at the hunchback gene: analyzing short transcription time traces in living fly embryos. PLOS Comput Biol 12:e1005256.  https://doi.org/10.1371/journal.pcbi.1005256CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ferraro T, Esposito E, Mancini L et al (2016) Transcriptional memory in the Drosophila embryo. Curr Biol 26:212–218.  https://doi.org/10.1002/wdev.221CrossRefGoogle Scholar
  7. 7.
    Santinha J, Martins L, Häkkinen A et al (2016) iCellFusion: tool for fusion and analysis of live-cell images from time lapsemultimodal mycroscopy. In: Karâa WBA, Dey N (eds) Biomedical image analysis and mining techniques for improved health outcomes, IGI Global. doi:  https://doi.org/10.4018/978-1-4666-8811-7
  8. 8.
    Young JW, Locke JCW, Altinok A et al (2011) Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nat Protoc 7:80.  https://doi.org/10.1038/nprot.2011.432CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Driever W, Nusslein-Volhard C (1988) A gradient of bicoid protein in Drosophila embryos. Cell 54:83–93.  https://doi.org/10.1016/0092-8674(88)90183-3CrossRefGoogle Scholar
  10. 10.
    Porcher A, Dostatni N (2010) The bicoid morphogen system. Curr Biol 20:R249–R254.  https://doi.org/10.1016/j.cub.2010.01.026CrossRefGoogle Scholar
  11. 11.
    Häkkinen A, Muthukrishnan AB, Mora A et al (2013) CellAging: a tool to study segregation and partitioning in division in cell lineages of Escherichia coli. Bioinformatics 29:1708–1709.  https://doi.org/10.1093/bioinformatics/btt194CrossRefPubMedGoogle Scholar
  12. 12.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Huy Tran
    • 1
    • 2
  • Carmina Angelica Perez-Romero
    • 2
    • 3
  • Teresa Ferraro
    • 1
    • 4
  • Cécile Fradin
    • 2
    • 3
  • Nathalie Dostatni
    • 2
  • Mathieu Coppey
    • 5
  • Aleksandra M. Walczak
    • 1
  1. 1.Ecole Normale SupérieurePSL Research University, CNRS, Sorbonne Université, Laboratoire de Physique ThéoriqueParisFrance
  2. 2.Institut CuriePSL Research University, CNRS, Sorbonne Université, Nuclear DynamicsParisFrance
  3. 3.McMaster UniversityHamiltonCanada
  4. 4.Institut de Biologie Paris-SeineSorbonne Université, CNRS, Developmental BiologyParisFrance
  5. 5.Institut CuriePSL Research University, CNRS, Sorbonne Université, Physico ChimieParisFrance

Personalised recommendations