Advertisement

Live Imaging of mRNA Transcription in Drosophila Embryos

  • Carmina Angelica Perez-Romero
  • Huy Tran
  • Mathieu Coppey
  • Aleksandra M. Walczak
  • Cécile Fradin
  • Nathalie Dostatni
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1863)

Abstract

Live imaging has been used in recent years for the understanding of dynamic processes in biology, such as embryo development. This was made possible by a combination of advancements in microscopy, leading to improved signal-to-noise ratios and better spatial and temporal resolutions, and by the development of new fluorescence markers, allowing for the quantification of protein expression and transcriptional dynamics in vivo. Here we describe a general protocol, which can be used in standard confocal microscopes to image early Drosophila melanogaster embryos, in order to learn about the transcriptional dynamics of a fluorescently labeled RNA.

Key words

MS2 system Live imaging Confocal microscopy RNA Embryo 

Notes

Acknowledgments

The authors thank Patricia Le Baccon and the Imaging Facility PICT-IBiSA of the Institut Curie. This work was supported by a PSL IDEX REFLEX Grant for Mesoscopic Biology (ND, AMW, MC), an Ontario Trillium Scholarship for International Students (CAPR), a Mitacs Global Link Scholarship (CAPR) and an Internal Curie Institute Scholarship (CAPR), ARC PJA20151203341 (ND), a Mayent Rothschild sabbatical Grant from the Curie Institute (CF) and an NSERC discovery grant RGPIN/06362-15 (CF), a Marie Curie MCCIG grant No. 303561 (AMW), ANR-11-LABX-0044 DEEP Labex (ND), ANR- 11-BSV2-0024 Axomorph (ND and AMW) and PSL ANR-10-IDEX-0001-02. Cécile Fradin and Nathalie Dostatni contributed equally to this work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  1. 1.
    Porcher A, Dostatni N (2010) The bicoid morphogen system. Curr Biol 20:R249–R254.  https://doi.org/10.1016/j.cub.2010.01.026CrossRefGoogle Scholar
  2. 2.
    Jensen E (2014) Technical review: in situ hybridization. Anat Rec 297:1349–1353.  https://doi.org/10.1002/ar.22944CrossRefGoogle Scholar
  3. 3.
    Urbanek MO, Galka-Marciniak P, Olejniczak M, Krzyzosiak WJ (2014) RNA imaging in living cells – methods and applications. RNA Biol 11:1083–1095.  https://doi.org/10.4161/rna.35506CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445.  https://doi.org/10.1016/S1097-2765(00)80143-4CrossRefGoogle Scholar
  5. 5.
    Elf J, Li GW, Xie XS (2011) Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316:1191–1194.  https://doi.org/10.1126/science.1141967CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Nelles DA, Fang MY, O’Connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW (2016) Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165:488–496.  https://doi.org/10.1016/j.cell.2016.02.054CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Cusanelli E, Perez-Romero CA, Chartrand P (2013) Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres. Mol Cell 51:780–791.  https://doi.org/10.1016/j.molcel.2013.08.029CrossRefGoogle Scholar
  8. 8.
    Bothma JP, Garcia HG, Ng S, Perry MW, Gregor T, Levine M (2015) Enhancer additivity and non-additivity are determined by enhancer strength in the Drosophila embryo. Elife 4.  https://doi.org/10.7554/eLife.07956
  9. 9.
    Desponds J, Tran H, Ferraro T, Lucas T, Perez-Romero CA, Guillou A, Fradin C, Coppey M, Dostatni N, Walczak AM (2016) Precision of readout at the hunchback gene. PLoS Comput Biol 12(12): e1005256.  https://doi.org/10.1371/journal.pcbi.1005256CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Bothma JP, Garcia HG, Esposito E, Schlissel G, Gregor T, Levine M (2014) Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos. Proc Natl Acad Sci U S A 111:10598–10603.  https://doi.org/10.1073/pnas.1410022111CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Lucas T, Ferraro T, Roelens B, De Las Heras Chanes J, Walczak AM, Coppey M, Dostatni N (2013) Live imaging of bicoid-dependent transcription in Drosophila embryos. Curr Biol 23:2135–2139.  https://doi.org/10.1016/j.cub.2013.08.053CrossRefGoogle Scholar
  12. 12.
    Garcia HG, Tikhonov M, Lin A, Gregor T (2013) Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning. Curr Biol 23:2140–2145.  https://doi.org/10.1016/j.cub.2013.08.054CrossRefGoogle Scholar
  13. 13.
    Lim B, Levine M, Yamakazi Y (2017) Transcriptional pre-patterning of Drosophila gastrulation. Curr Biol 27(2):286–290.  https://doi.org/10.1016/j.cub.2016.11.047CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Esposito E, Lim B, Guessous G, Falahati H, Levine M (2016) Mitosis-associated repression in development. Genes Dev. 30(13):1503–1508.  https://doi.org/10.1101/gad.281188.116CrossRefGoogle Scholar
  15. 15.
    Ferraro T, Esposito E, Mancini L, Ng S, Lucas T, Coppey M, Dostatni N, Walczak AM, Levine M, Lagha M (2016) Transcriptional memory in the Drosophila embryo. Curr Biol 26:212–218.  https://doi.org/10.1016/j.cub.2015.11.058CrossRefGoogle Scholar
  16. 16.
    Ferraro T, Lucas T, Clémot M, De Las Heras Chanes J, Desponds J, Coppey M, Walczak AM, Dostatni N (2016) New methods to image transcription in living fly embryos: the insights so far, and the prospects. Wiley Interdiscip Rev Dev Biol 5:296–310.  https://doi.org/10.1002/wdev.221CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Fukaya T, Lim B, Levine M (2016) Enhancer control of transcriptional bursting. Cell 166:358–368.  https://doi.org/10.1016/j.cell.2016.05.025CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Forrest KM, Gavis ER (2003) Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr Biol 13:1159–1168.  https://doi.org/10.1016/S0960-9822(03)00451-2CrossRefGoogle Scholar
  19. 19.
    Katsani KR, Karess RE, Dostatni N, Doye V (2008) In vivo dynamics of Drosophila nuclear envelope components. Mol Biol Cell 19:3652–3666.  https://doi.org/10.1091/mbc.E07-11-1162CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Pandey R, Heidmann S, Lehner CF (2005) Epithelial re-organization and dynamics of progression through mitosis in Drosophila separase complex mutants. J Cell Sci 118:733–742.  https://doi.org/10.1242/jcs.01663CrossRefGoogle Scholar
  21. 21.
    Linkert M, Rueden CT, Allan C, Burel J-M, Moore W, Patterson A, Loranger B, Moore J, Neves C, Macdonald D, Tarkowska A, Sticco C, Hill E, Rossner M, Eliceiri KW, Swedlow JR (2010) Metadata matters: access to image data in the real world. J Cell Biol 189:777–782.  https://doi.org/10.1083/jcb.201004104CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Carmina Angelica Perez-Romero
    • 1
    • 2
  • Huy Tran
    • 1
    • 3
  • Mathieu Coppey
    • 4
  • Aleksandra M. Walczak
    • 3
  • Cécile Fradin
    • 1
    • 2
  • Nathalie Dostatni
    • 1
  1. 1.Institut CuriePSL Research University, CNRS, Sorbonne Université, Nuclear DynamicsParisFrance
  2. 2.McMaster UniversityHamiltonCanada
  3. 3.Ecole Normale SupérieurePSL Research University, CNRS, Sorbonne Université, Physique ThéoriqueParisFrance
  4. 4.Institut CuriePSL Research University, CNRS, Sorbonne Université, Physico ChimieParisFrance

Personalised recommendations