Advertisement

Quantitative Multiplex Immunoassay for Profiling Bone Turnover Biomarkers in Human Bone Tissue Culture Supernatants

  • Wen-Rong Lie
  • Derek F. Amanatullah
  • Bonnie L. King
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1862)

Abstract

Bone is a metabolically dynamic tissue that is continuously built up and broken down through anabolic and catabolic processes regulated by a variety of systemic and local signaling molecules. Here, we describe quantitative multiplex immunoassay analysis of supernatants collected from cultured human bone tissue fragments to profile local factors associated with the bone turnover process.

Key words

Bone turnover biomarkers Human bone tissue culture Multiplex immunoassay 

Notes

Acknowledgments

This work was supported by a grant from the METAvivor Foundation to BLK.

References

  1. 1.
    Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Suppl 3):S131–S139. https://doi.org/10.2215/CJN.04151206 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Weatherholt AM, Fuchs RK, Warden SJ (2012) Specialized connective tissue: bone, the structural framework of the upper extremity. J Hand Ther 25(2):123–131.; quiz 132. https://doi.org/10.1016/j.jht.2011.08.003 CrossRefPubMedGoogle Scholar
  3. 3.
    Sims NA, Martin TJ (2014) Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy Reports 3:481. https://doi.org/10.1038/bonekey.2013.215 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jung K, Lein M (2014) Bone turnover markers in serum and urine as diagnostic, prognostic and monitoring biomarkers of bone metastasis. Biochim Biophys Acta 1846(2):425–438. https://doi.org/10.1016/j.bbcan.2014.09.001 CrossRefPubMedGoogle Scholar
  5. 5.
    Shetty S, Kapoor N, Bondu JD et al (2016) Bone turnover markers: emerging tool in the management of osteoporosis. Indian J Endocrinol Metab 20(6):846–852. https://doi.org/10.4103/2230-8210.192914 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    D'Oronzo S, Brown J, Coleman R (2017) The role of biomarkers in the management of bone-homing malignancies. J Bone Oncol 9:1–9. https://doi.org/10.1016/j.jbo.2017.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396. https://doi.org/10.1196/annals.1365.035 CrossRefPubMedGoogle Scholar
  8. 8.
    Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289(5484):1504–1508CrossRefGoogle Scholar
  9. 9.
    Kuo TR, Chen CH (2017) Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomark Res 5:18. https://doi.org/10.1186/s40364-017-0097-4 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Windrichova J, Fuchsova R, Kucera R et al (2016) Testing of a novel Cancer metastatic multiplex panel for the detection of bone-metastatic disease - a pilot study. Anticancer Res 36(4):1973–1978PubMedGoogle Scholar
  11. 11.
    Merle B, Garnero P (2012) The multiple facets of periostin in bone metabolism. Osteoporos Int 23(4):1199–1212. https://doi.org/10.1007/s00198-011-1892-7 CrossRefPubMedGoogle Scholar
  12. 12.
    Price CP, Kirwan A, Vader C (1995) Tartrate-resistant acid phosphatase as a marker of bone resorption. Clin Chem 41(5):641–643PubMedGoogle Scholar
  13. 13.
    Halleen JM, Alatalo SL, Suominen H et al (2000) Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res Off J Am Soc Bone Miner Res 15(7):1337–1345. https://doi.org/10.1359/jbmr.2000.15.7.1337 CrossRefGoogle Scholar
  14. 14.
    Minkin C (1982) Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int 34(3):285–290CrossRefGoogle Scholar
  15. 15.
    Bertoldo F (2017) Markers of bone turnover in bone metastasis from prostate cancer. In: Fea B (ed) Bone metastases from prostate Cancer, vol X. Springer, Switzerland, pp 13–23. https://doi.org/10.1007/978-3-319-42327-2_2 CrossRefGoogle Scholar
  16. 16.
    Liu YP, Yuan CM, Zhang SG et al (2016) TWEAK/Fn14 signaling: a promising target in intervertebral disc degeneration. Histol Histopathol 31(9):943–948. https://doi.org/10.14670/HH-11-775 CrossRefPubMedGoogle Scholar
  17. 17.
    D'Oronzo S, Brown J, Coleman R (2017) The value of biomarkers in bone metastasis. Eur J Cancer Care (Engl) 26(6):e12725. https://doi.org/10.1111/ecc.12725 CrossRefGoogle Scholar
  18. 18.
    Vervloet MG, Brandenburg VM (2017) Circulating markers of bone turnover. J Nephrol 30(5):663–670. https://doi.org/10.1007/s40620-017-0408-8 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Greenblatt MB, Tsai JN, Wein MN (2017) Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem 63(2):464–474. https://doi.org/10.1373/clinchem.2016.259085 CrossRefPubMedGoogle Scholar
  20. 20.
    Kini U, Nandeesh BN (2012) Physiology of bone formation, remodeling, and metabolism. In: Fogelman I (ed) Radionuclide and hybrid bone imaging, vol XIV. Springer-Verlag, Berlin Heidelberg, pp 29–57. https://doi.org/10.1007/978-3-642-02400-9_2 CrossRefGoogle Scholar
  21. 21.
    Casimiro S, Guise TA, Chirgwin J (2009) The critical role of the bone microenvironment in cancer metastases. Mol Cell Endocrinol 310(1–2):71–81. https://doi.org/10.1016/j.mce.2009.07.004 CrossRefPubMedGoogle Scholar
  22. 22.
    Coleman RE (1997) Skeletal complications of malignancy. Cancer 80(8 Suppl):1588–1594CrossRefGoogle Scholar
  23. 23.
    Contag CH, Lie WR, Bammer MC et al (2014) Monitoring dynamic interactions between breast cancer cells and human bone tissue in a co-culture model. Molecular imaging and biology: MIB: the official publication of the academy of. Mol Imaging 16(2):158–166. https://doi.org/10.1007/s11307-013-0685-0 CrossRefGoogle Scholar
  24. 24.
    Templeton ZS, Bachmann MH, Alluri RV et al (2015) Methods for culturing human femur tissue explants to study breast Cancer cell colonization of the metastatic niche. J Vis Exp 97(e52656):1–10. https://doi.org/10.3791/52656 CrossRefGoogle Scholar
  25. 25.
    Templeton ZS, Lie WR, Wang W et al (2015) Breast Cancer cell colonization of the human bone marrow adipose tissue niche. Neoplasia 17(12):849–861. https://doi.org/10.1016/j.neo.2015.11.005 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Amanatullah DF, Tamaresis JS, Chu P et al (2017) Local estrogen axis in the human bone microenvironment regulates estrogen receptor-positive breast cancer cells. Breast Cancer Res 19(1):121. https://doi.org/10.1186/s13058-017-0910-x CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Wen-Rong Lie
    • 1
  • Derek F. Amanatullah
    • 2
  • Bonnie L. King
    • 3
  1. 1.MilliporeSigma CorporationSt LouisUSA
  2. 2.Department of Orthopaedic SurgeryStanford University School of MedicineRedwood CityUSA
  3. 3.Department of PediatricsStanford University School of MedicineStanfordUSA

Personalised recommendations