Advertisement

Practical Analysis of Hi-C Data: Generating A/B Compartment Profiles

  • Hisashi Miura
  • Rawin Poonperm
  • Saori Takahashi
  • Ichiro Hiratani
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1861)

Abstract

Recent advances in next-generation sequencing (NGS) and chromosome conformation capture (3C) analysis have led to the development of Hi-C, a genome-wide version of the 3C method. Hi-C has identified new levels of chromosome organization such as A/B compartments, topologically associating domains (TADs) as well as large megadomains on the inactive X chromosome, while allowing the identification of chromatin loops at the genome scale. Despite its powerfulness, Hi-C data analysis is much more involved compared to conventional NGS applications such as RNA-seq or ChIP-seq and requires many more steps. This presents a significant hurdle for those who wish to implement Hi-C technology into their laboratory. On the other hand, genomics data repository sites sometimes contain processed Hi-C data sets, allowing researchers to perform further analysis without the need for high-spec workstations and servers. In this chapter, we provide a detailed description on how to calculate A/B compartment profiles from processed Hi-C data on the autosomes and the active/inactive X chromosomes.

Key words

Epigenetics Hi-C contact map 3D genome organization A/B compartments Inactive X chromosome Bioinformatics 

Notes

Acknowledgments

This work was supported by a RIKEN CDB intramural grant to I.H.

References

  1. 1.
    Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311.  https://doi.org/10.1126/science.1067799CrossRefGoogle Scholar
  2. 2.
    Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14:390–403.  https://doi.org/10.1038/nrg3454CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    de Wit E, de Laat W (2012) A decade of 3C technologies-insights into nuclear organization. Genes Dev 26:11–24.  https://doi.org/10.1101/gad.179804.111.GENESCrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Denker A, De Laat W (2016) The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev 30:1357–1382.  https://doi.org/10.1101/gad.281964.116CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dixon JR, Gorkin DU, Ren B (2016) Chromatin domains: the unit of chromosome organization. Mol Cell 62:668–680.  https://doi.org/10.1016/j.molcel.2016.05.018CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Simonis M, Klous P, Splinter E et al (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348–1354.  https://doi.org/10.1038/ng1896CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhao Z, Tavoosidana G, Sjölinder M et al (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38:1341–1347.  https://doi.org/10.1038/ng1891CrossRefGoogle Scholar
  8. 8.
    Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293.  https://doi.org/10.1126/science.1181369CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cremer T, Kreth G, Koester H et al (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10:179–212.  https://doi.org/10.1615/CritRevEukarGeneExpr.v10.i2.60CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380.  https://doi.org/10.1038/nature11082CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nora EP, Lajoie BR, Schulz EG et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381–385.  https://doi.org/10.1038/nature11049CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rao SSP, Huntley MH, Durand NC et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680.  https://doi.org/10.1016/j.cell.2014.11.021CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Deng X, Ma W, Ramani V et al (2015) Bipartite structure of the inactive mouse X chromosome. Genome Biol 16:152.  https://doi.org/10.1186/s13059-015-0728-8CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Minajigi A, Froberg JE, Wei C et al (2015) A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349:aab2276-aab2276.  https://doi.org/10.1126/science.aab2276CrossRefGoogle Scholar
  15. 15.
    Giorgetti L, Lajoie BR, Carter AC et al (2016) Structural organization of the inactive X chromosome in the mouse. Nature 535:575–579.  https://doi.org/10.1038/nature18589CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Darrow EM, Huntley MH, Dudchenko O et al (2016) Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. Proc Natl Acad Sci U S A 113:E4504–E4512.  https://doi.org/10.1073/pnas.1609643113CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Nagano T, Várnai C, Schoenfelder S et al (2015) Comparison of Hi-C results using in-solution versus in-nucleus ligation. Genome Biol:1–13.  https://doi.org/10.1186/s13059-015-0753-7
  18. 18.
    Kalhor R, Tjong H, Jayathilaka N et al (2012) Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat Biotechnol 30:90–98.  https://doi.org/10.1038/nbt.2057CrossRefGoogle Scholar
  19. 19.
    Ma W, Ay F, Lee C et al (2015) Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Nat Methods 12:71–78.  https://doi.org/10.1038/nmeth.3205CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hsieh THS, Weiner A, Lajoie B et al (2015) Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162:108–119.  https://doi.org/10.1016/j.cell.2015.05.048CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dryden NH, Broome LR, Dudbridge F et al (2014) Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome Res 24:1854–1868.  https://doi.org/10.1101/gr.175034.114CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hughes JR, Roberts N, McGowan S et al (2014) Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat Genet 46:205–212.  https://doi.org/10.1038/ng.2871CrossRefGoogle Scholar
  23. 23.
    Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64.  https://doi.org/10.1038/nature12593CrossRefGoogle Scholar
  24. 24.
    Du Z, Zheng H, Huang B et al (2017) Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547:232–235.  https://doi.org/10.1038/nature23263CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ke Y, Xu Y, Chen X et al (2017) 3D chromatin structures of mature gametes and structural reprogramming during mammalian resource. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell 170:367–381.e20.  https://doi.org/10.1016/j.cell.2017.06.029CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dekker J, Belmont AS, Guttman M et al (2017) The 4D nucleome project. Nature 549:219–226.  https://doi.org/10.1038/nature23884CrossRefPubMedCentralGoogle Scholar
  27. 27.
    van Steensel B, Belmont AS (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780–791.  https://doi.org/10.1016/j.cell.2017.04.022CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ryba T, Hiratani I, Lu J et al (2010) Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 20:761–770.  https://doi.org/10.1101/gr.099655.109CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dixon JR, Jung I, Selvaraj S et al (2015) Chromatin architecture reorganization during stem cell differentiation. Nature 518:331–336.  https://doi.org/10.1038/nature14222CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Henry VJ, Bandrowski AE, Pepin AS et al (2014) OMICtools: an informative directory for multi-omic data analysis. Database (Oxford).  https://doi.org/10.1093/database/bau069CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Servant N, Varoquaux N, Lajoie BR et al (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16:259.  https://doi.org/10.1186/s13059-015-0831-xCrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Durand NC, Robinson JT, Shamim MS et al (2016) Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst 3:99–101.  https://doi.org/10.1016/j.cels.2015.07.012CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kerpedjiev P, Abdennur N, Lekschas F et al (2017) HiGlass: web-based visual comparison and exploration of genome interaction maps. bioRxiv 2017:1–7.  https://doi.org/10.1101/121889CrossRefGoogle Scholar
  34. 34.
    Akdemir KC, Chin L (2015) HiCPlotter integrates genomic data with interaction matrices. Genome Biol 16:198.  https://doi.org/10.1186/s13059-015-0767-1CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    McDaniell R, Lee BK, Song L et al (2010) Heritable individual-specific and allele-specific chromatin signatures in humans. Science 328:235–239.  https://doi.org/10.1126/science.1184655CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kucera KS, Reddy TE, Pauli F et al (2011) Allele-specific distribution of RNA polymerase II on female X chromosomes. Hum Mol Genet 20:3964–3973.  https://doi.org/10.1093/hmg/ddr315CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wingett S, Ewels P, Furlan-Magaril M et al (2015) HiCUP: pipeline for mapping and processing Hi-C data. F1000Research.  https://doi.org/10.12688/f1000research.7334.1CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Servant N, Lajoie BR, Nora EP et al (2012) HiTC: Exploration of high-throughput “C” experiments. Bioinformatics 28:2843–2844.  https://doi.org/10.1093/bioinformatics/bts521CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Castellano G, Le DF, Pulido AH et al (2015) HiC-inspector: a toolkit for high-throughput chromosome capture data. bioRxiv.  https://doi.org/10.1101/020636
  40. 40.
    Durand NC, Shamim MS, Machol I et al (2016) Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 3:95–98.  https://doi.org/10.1016/j.cels.2016.07.002CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lazaris C, Kelly S, Ntziachristos P et al (2016) HiC-bench: comprehensive and reproducible Hi-C data analysis designed for parameter exploration and benchmarking. bioRxiv.  https://doi.org/10.1186/s12864-016-3387-6
  42. 42.
    Hwang YC, Lin CF, Valladares O et al (2015) HIPPIE: a high-throughput identification pipeline for promoter interacting enhancer elements. Bioinformatics 31:1290–1292.  https://doi.org/10.1093/bioinformatics/btu801CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Serra F, Baù D, Filion G, Marti-Renom MA (2016) Structural features of the fly chromatin colors revealed by automatic three-dimensional modeling. bioRxiv.  https://doi.org/10.1101/036764
  44. 44.
    Sauria MEG, Phillips-Cremins JE, Corces VG, Taylor J (2015) HiFive: a tool suite for easy and efficient HiC and 5C data analysis. Genome Biol 16:237.  https://doi.org/10.1186/s13059-015-0806-yCrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Schmid MW, Grob S, Grossniklaus U (2015) HiCdat: a fast and easy-to-use Hi-C data analysis tool. BMC Bioinformatics 16:277.  https://doi.org/10.1186/s12859-015-0678-xCrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yaffe E, Tanay A (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet 43:1059–1065.  https://doi.org/10.1038/ng.947CrossRefGoogle Scholar
  47. 47.
    Imakaev M, Fudenberg G, McCord RP et al (2012) Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 9:999–1003.  https://doi.org/10.1038/nmeth.2148CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lin YC, Benner C, Mansson R et al (2012) Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate. Nat Immunol.  https://doi.org/10.1038/ni.2432CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hisashi Miura
    • 1
  • Rawin Poonperm
    • 1
  • Saori Takahashi
    • 1
  • Ichiro Hiratani
    • 1
  1. 1.Laboratory for Developmental EpigeneticsRIKEN Center for Developmental Biology (CDB) and Center for Biosystems Dynamics Research (BDR)KobeJapan

Personalised recommendations