X-Chromosome Inactivation and Escape from X Inactivation in Mouse

  • Wenxiu Ma
  • Giancarlo Bonora
  • Joel B. Berletch
  • Xinxian Deng
  • William S. Noble
  • Christine M. DistecheEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1861)


X chromosome inactivation silences one X chromosome in female mammals. However, this silencing is incomplete, and some genes escape X inactivation. We describe methods to determine the chromosome-wide X inactivation status of genes in tissues or cell lines derived from mice using a combination of skewing of X inactivation and allele-specific analyses of gene expression based on RNA-seq.

Key words

Allelic gene expression X inactivation Escape from X inactivation 



This work was supported by grants GM046883 (C.M.D.), GM113943 (C.M.D., W.M.), and DK107979 (C.M.D., W.N.).


  1. 1.
    Deng X, Berletch JB, Nguyen DK et al (2014) X chromosome regulation: diverse patterns in development, tissues and disease. Nat Rev Genet 15:367–378CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:400–404CrossRefGoogle Scholar
  3. 3.
    Yang F, Babak T, Shendure J et al (2010) Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 20:614–622CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Berletch JB, Yang F, Disteche CM (2010) Escape from X inactivation in mice and humans. Genome Biol 11:213CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bellott DW, Hughes JF, Skaletsky H et al (2014) Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508:494–499CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Cortez D, Marin R, Toledo-Flores D et al (2014) Origins and functional evolution of Y chromosomes across mammals. Nature 508:488–493CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Balaton BP, Brown CJ (2016) Escape artists of the X chromosome. Trends Genet 32:348–359CrossRefGoogle Scholar
  8. 8.
    Berletch JB, Yang F, Xu J et al (2011) Genes that escape from X inactivation. Hum Genet 130:237–245CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Disteche CM (2016) Dosage compensation of the sex chromosomes and autosomes. Semin Cell Dev Biol 56:9–18CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Disteche CM (2012) Dosage compensation of the sex chromosomes. Annu Rev Genet 46:537–560CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Lyon M (1961) Gene action in the X-chromosome of the mouse (Mus musculus L). Nature 190:372–373CrossRefGoogle Scholar
  12. 12.
    Migeon BR (2014) Females are mosaic: X inactivation and sex differences in disease. Oxford University Press, OxfordGoogle Scholar
  13. 13.
    Calabrese JM, Sun W, Song L et al (2012) Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 151:951–963CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Corbel C, Diabangouaya P, Gendrel AV et al (2013) Unusual chromatin status and organization of the inactive X chromosome in murine trophoblast giant cells. Development 140:861–872CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Finn EH, Smith CL, Rodriguez J et al (2014) Maternal bias and escape from X chromosome imprinting in the midgestation mouse placenta. Dev Biol 390:80–92CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Berletch JB, Ma W, Yang F et al (2015) Identification of genes escaping X inactivation by allelic expression analysis in a novel hybrid mouse model. Data Brief 5:761–769CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Lingenfelter PA, Adler DA, Poslinski D et al (1998) Escape from X inactivation of Smcx is preceded by silencing during mouse development. Nat Genet 18:212–213CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Balaton BP, Cotton AM, Brown CJ (2015) Derivation of consensus inactivation status for X-linked genes from genome-wide studies. Biol Sex Differ 6:35CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Berletch JB, Ma W, Yang F et al (2015) Escape from X inactivation varies in mouse tissues. PLoS Genet 11:e1005079CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Deng Q, Ramskold D, Reinius B et al (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343:193–196CrossRefGoogle Scholar
  21. 21.
    Marks H, Kerstens HH, Barakat TS et al (2015) Dynamics of gene silencing during X inactivation using allele-specific RNA-seq. Genome Biol 16:149CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Benitez JA, Cheng S, Deng Q (2017) Revealing allele-specific gene expression by single-cell transcriptomics. Int J Biochem Cell BiolGoogle Scholar
  23. 23.
    Al Nadaf S, Deakin JE, Gilbert C et al (2011) A cross-species comparison of escape from X inactivation in Eutheria: implications for evolution of X chromosome inactivation. Chromosoma 121:71–78CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Wu H, Luo J, Yu H et al (2014) Cellular resolution maps of X chromosome inactivation: implications for neural development, function, and disease. Neuron 81:103–119CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Lee JH, Daugharthy ER, Scheiman J et al (2015) Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc 10:442–458CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Cotton AM, Lam L, Affleck JG et al (2011) Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation. Hum Genet 130:187–201CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Cotton AM, Price EM, Jones MJ et al (2015) Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation. Hum Mol Genet 24:1528–1539CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Filippova GN, Cheng MK, Moore JM et al (2005) Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development. Dev Cell 8:31–42CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Keown CL, Berletch JB, Castanon R et al (2017) Allele-specific non-CG DNA methylation marks domains of active chromatin in female mouse brain. Proc Natl Acad Sci U S A 114:E2882–E2890CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Lister R, Mukamel EA, Nery JR et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Marks H, Chow JC, Denissov S et al (2009) High-resolution analysis of epigenetic changes associated with X inactivation. Genome Res 19:1361–1373CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Hoki Y, Kimura N, Kanbayashi M et al (2009) A proximal conserved repeat in the Xist gene is essential as a genomic element for X-inactivation in mouse. Development 136:139–146CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hooper M, Hardy K, Handyside A et al (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326:292–295CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562CrossRefGoogle Scholar
  36. 36.
    Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Raney BJ, Dreszer TR, Barber GP et al (2014) Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser. Bioinformatics 30:1003–1005CrossRefGoogle Scholar
  39. 39.
    Kim D, Pertea G, Trapnell C et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169CrossRefGoogle Scholar
  41. 41.
    Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wenxiu Ma
    • 1
  • Giancarlo Bonora
    • 2
  • Joel B. Berletch
    • 3
  • Xinxian Deng
    • 3
  • William S. Noble
    • 2
  • Christine M. Disteche
    • 3
    • 4
    Email author
  1. 1.Department of StatisticsUniversity of California, RiversideRiversideUSA
  2. 2.Department of Genome SciencesUniversity of WashingtonSeattleUSA
  3. 3.Department of PathologyUniversity of WashingtonSeattleUSA
  4. 4.Department of MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations