Advertisement

SNAREs pp 53-69 | Cite as

Dynamic Light Scattering Analysis to Dissect Intermediates of SNARE-Mediated Membrane Fusion

  • Byoungjae Kong
  • Yoosoo Yang
  • Dae-Hyuk Kweon
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1860)

Abstract

Dynamic light scattering (DLS) spectroscopy provides rapid information on the size distribution of a large number of particles in a mixture. Vesicle sizes change during the merger of lipid bilayers, and DLS analysis can provide rapid, accurate, and non-perturbative quantification of the size distribution of proteoliposomes in SNARE-dependent membrane fusion. In this chapter, we describe the methodologies and reagents used for DLS spectroscopy in a biochemical and biophysical study of SNARE-mediated membrane fusion.

Key words

Dynamic light scattering SNARE Membrane fusion Size distribution 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) of the Korean Government (2017R1A2B2010292, 2017R1A6A1A03015642, and NRF-2017R1A2B2008211), and the KIST Young Fellow Program.

References

  1. 1.
    Kato H, Nakamura A, Takahashi K, Kinugasa S (2012) Accurate size and size-distribution determination of polystyrene latex nanoparticles in aqueous medium using dynamic light scattering and asymmetrical flow field flow fractionation with multi-angle light scattering. Nanomaterials (Basel) 2(1):15–30CrossRefGoogle Scholar
  2. 2.
    Trivedi VD, Yu C, Veeramuthu B, Francis S, Chang DK (2000) Fusion induced aggregation of model vesicles studied by dynamic and static light scattering. Chem Phys Lipids 107(1):99–106CrossRefGoogle Scholar
  3. 3.
    Maulucci G, De Spirito M, Arcovito G, Boffi F, Castellano AC, Briganti G (2005) Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophys J 88(5):3545–3550CrossRefGoogle Scholar
  4. 4.
    Egelhaaf SU, Wehrli E, Muller M, Adrian M, Schurtenberger P (1996) Determination of the size distribution of lecithin liposomes: a comparative study using freeze fracture, cryoelectron microscopy and dynamic light scattering. J Microsc (Oxford) 184:214–228CrossRefGoogle Scholar
  5. 5.
    Yang Y, Heo P, Kong B, Park JB, Jung YH, Shin J, Jeong C, Kweon DH (2015) Dynamic light scattering analysis of SNARE-driven membrane fusion and the effects of SNARE-binding flavonoids. Biochem Biophys Res Commun 465(4):864–870CrossRefGoogle Scholar
  6. 6.
    Brunger AT (2001) Structure of proteins involved in synaptic vesicle fusion in neurons. Annu Rev Biophys Biom 30:157–171CrossRefGoogle Scholar
  7. 7.
    Chen YA, Scales SJ, Scheller RH (2001) Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron 30(1):161–170CrossRefGoogle Scholar
  8. 8.
    Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92(6):759–772CrossRefGoogle Scholar
  9. 9.
    Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 angstrom resolution. Nature 395(6700):347–353CrossRefGoogle Scholar
  10. 10.
    Poirier MA, Xiao WZ, Macosko JC, Chan C, Shin YK, Bennett MK (1998) The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat Struct Biol 5(9):765–769CrossRefGoogle Scholar
  11. 11.
    Hanson PI, Roth R, Morisaki H, Jahn R, Heuser JE (1997) Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90(3):523–535CrossRefGoogle Scholar
  12. 12.
    Lin RC, Scheller RH (1997) Structural organization of the synaptic exocytosis core complex. Neuron 19(5):1087–1094CrossRefGoogle Scholar
  13. 13.
    Schaub JR, Lu XB, Doneske B, Shin YK, Mcnew JA (2006) Hemifusion arrest by complexin is relieved by Ca2+−synaptotagmin I. Nat Struct Mol Biol 13(8):748–750CrossRefGoogle Scholar
  14. 14.
    Xu YB, Zhang F, Su ZL, McNew JA, Shin YK (2005) Hemifusion in SNARE-mediated membrane fusion. Nat Struct Mol Biol 12(5):417–422CrossRefGoogle Scholar
  15. 15.
    Lu XB, Zhang F, McNew JA, Shin YK (2005) Membrane fusion induced by neuronal SNAREs transits through hemifusion. J Biol Chem 280(34):30538–30541CrossRefGoogle Scholar
  16. 16.
    Chernomordik LV, Kozlov MM (2008) Mechanics of membrane fusion. Nat Struct Mol Biol 15(7):675–683CrossRefGoogle Scholar
  17. 17.
    Diao JJ, Grob P, Cipriano DJ, Kyoung M, Zhang YX, Shah S, Nguyen A, Padolina M, Srivastava A, Vrljic M, Shah A, Nogales E, Chu S, Brunger AT (2012) Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion. elife 1:e00109CrossRefGoogle Scholar
  18. 18.
    McIntyre JC, Sleight RG (1991) Fluorescence assay for phospholipid membrane asymmetry. Biochemistry 30(51):11819–11827CrossRefGoogle Scholar
  19. 19.
    Chen Y, Xu YB, Zhang F, Shin YK (2004) Constitutive versus regulated SNARE assembly: a structural basis. EMBO J 23(4):681–689CrossRefGoogle Scholar
  20. 20.
    Pobbati AV, Stein A, Fasshauer D (2006) N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313(5787):673–676CrossRefGoogle Scholar
  21. 21.
    Sorensen JB, Wiederhold K, Muller EM, Milosevic I, Nagy G, de Groot BL, Grubmuller H, Fasshauer D (2006) Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J 25(5):955–966CrossRefGoogle Scholar
  22. 22.
    Melia TJ (2007) Putting the clamps on membrane fusion: how complexin sets the stage for calcium-mediated exocytosis. FEBS Lett 581(11):2131–2139CrossRefGoogle Scholar
  23. 23.
    Jung CH, Yang YS, Kim JS, Shin JI, Jin YS, Shin JY, Lee JH, Chung KM, Hwang JS, Oh JM, Shin YK, Kweon DH (2008) A search for synthetic peptides that inhibit soluble N-ethylmaleimide sensitive-factor attachment receptor-mediated membrane fusion. FEBS J 275(12):3051–3063CrossRefGoogle Scholar
  24. 24.
    Kyoung M, Srivastava A, Zhang Y, Diao J, Vrljic M, Grob P, Nogales E, Chu S, Brunger AT (2011) In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release. Proc Natl Acad Sci U S A 108(29):E304–E313CrossRefGoogle Scholar
  25. 25.
    Hernandez JM, Stein A, Behrmann E, Riedel D, Cypionka A, Farsi Z, Walla PJ, Raunser S, Jahn R (2012) Membrane fusion intermediates via directional and full assembly of the SNARE complex. Science 336(6088):1581–1584CrossRefGoogle Scholar
  26. 26.
    Castorph S, Henriques SS, Holt M, Riedel D, Jahn R, Salditt T (2011) Synaptic vesicles studied by dynamic light scattering. Eur Phys J E Soft Matter 34(6):63CrossRefGoogle Scholar
  27. 27.
    Day EP, Ho JT, Kunze RK Jr, Sun ST (1977) Dynamic light scattering study of calcium-induced fusion in phospholipid vesicles. Biochim Biophys Acta 470(3):503–508CrossRefGoogle Scholar
  28. 28.
    Yang Y, Shin JY, Oh JM, Jung CH, Hwang Y, Kim S, Kim JS, Yoon KJ, Ryu JY, Shin J, Hwang JS, Yoon TY, Shin YK, Kweon DH (2010) Dissection of SNARE-driven membrane fusion and neuroexocytosis by wedging small hydrophobic molecules into the SNARE zipper. Proc Natl Acad Sci U S A 107(51):22145–22150CrossRefGoogle Scholar
  29. 29.
    Jung CH, Yang YS, Kim JS, Shin YK, Hwang JS, Son ED, Lee HH, Chung KM, Oh JM, Lee JH, Kweon DH (2009) Inhibition of SNARE-driven neuroexocytosis by plant extracts. Biotechnol Lett 31(3):361–369CrossRefGoogle Scholar
  30. 30.
    Heo P, Yang Y, Han KY, Kong B, Shin JH, Jung Y, Jeong C, Shin J, Shin YK, Ha T, Kweon DH (2016) A chemical controller of SNARE-driven membrane fusion that primes vesicles for Ca2+-triggered millisecond exocytosis. J Am Chem Soc 138(13):4512–4521CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwonRepublic of Korea
  2. 2.Biomedical Research InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
  3. 3.Division for Bio-Medical Science and TechnologyKIST School, Korea University of Science and TechnologySeoulRepublic of Korea
  4. 4.Biomedical Institute for ConvergenceSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations