Advertisement

SNAREs pp 391-401 | Cite as

Imaging SNAP-29 in Drosophila

  • Hao Xu
  • Bryan Stewart
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1860)

Abstract

SNAP-29 is expressed throughout the life cycle of fruit fly and exhibits wide tissue distribution patterns. Unlike other SNAP-25-like proteins (i.e., SNAP-25, SNAP-23/24, and SNAP-47) which primarily support exocytosis at the plasma membrane, SNAP-29 regulates various intracellular trafficking events, by partnering with proteins active in both exocytosis and endocytosis. Here we describe the protocol to localize SNAP-29 in early embryos, imaginal discs from third instar larva, and immortalized S2 cells via immunofluorescence microscopy.

Key words

SNAP-29 Ubisnap usnp Drosophila 

Notes

Acknowledgments

We thank Dr. Julie Brill for critical inputs.

References

  1. 1.
    Xu H (2002) Studying the roles of Drosophila SNAREs in intracellular membrane trafficking. In: Department of Biochemistry. University of Toronto, TorontoGoogle Scholar
  2. 2.
    Xu H, Mohtashami M, Stewart B, Boulianne G, Trimble WS (2014) Drosophila SNAP-29 is an essential SNARE that binds multiple proteins involved in membrane traffic. PLoS One 9:e91471CrossRefGoogle Scholar
  3. 3.
    Fuchs-Telem D, Stewart H, Rapaport D, Nousbeck J, Gat A, Gini M, Lugassy Y, Emmert S, Eckl K, Hennies HC, Sarig O, Goldsher D, Meilik B, Ishida-Yamamoto A, Horowitz M, Sprecher E (2011) CEDNIK syndrome results from loss-of-function mutations in SNAP29. Br J Dermatol 164:610–616PubMedGoogle Scholar
  4. 4.
    Sprecher E, Ishida-Yamamoto A, Mizrahi-Koren M, Rapaport D, Goldsher D, Indelman M, Topaz O, Chefetz I, Keren H, O’Brien TJ, Bercovich D, Shalev S, Geiger D, Bergman R, Horowitz M, Mandel H (2005) A mutation in SNAP29, coding for a SNARE protein involved in intracellular trafficking, causes a novel neurocutaneous syndrome characterized by cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma. Am J Hum Genet 77:242–251CrossRefGoogle Scholar
  5. 5.
    Schiller SA, Seebode C, Wieser GL, Goebbels S, Mobius W, Horowitz M, Sarig O, Sprecher E, Emmert S (2016) Establishment of two mouse models for CEDNIK syndrome reveals the pivotal role of SNAP29 in epidermal differentiation. J Invest Dermatol 136:672–679CrossRefGoogle Scholar
  6. 6.
    Schiller SA, Seebode C, Wieser GL, Goebbels S, Ruhwedel T, Horowitz M, Rapaport D, Sarig O, Sprecher E, Emmert S (2016) Non-keratinocyte SNAP29 influences epidermal differentiation and hair follicle formation in mice. Exp Dermatol 25:647–649CrossRefGoogle Scholar
  7. 7.
    Li Q, Frank M, Akiyama M, Shimizu H, Ho SY, Thisse C, Thisse B, Sprecher E, Uitto J (2011) Abca12-mediated lipid transport and Snap29-dependent trafficking of lamellar granules are crucial for epidermal morphogenesis in a zebrafish model of ichthyosis. Dis Model Mech 4:777–785CrossRefGoogle Scholar
  8. 8.
    Rapaport D, Lugassy Y, Sprecher E, Horowitz M (2010) Loss of SNAP29 impairs endocytic recycling and cell motility. PLoS One 5:e9759CrossRefGoogle Scholar
  9. 9.
    Sato M, Saegusa K, Sato K, Hara T, Harada A (2011) Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells. Mol Biol Cell 22:2579–2587CrossRefGoogle Scholar
  10. 10.
    Kang J, Bai Z, Zegarek MH, Grant BD, Lee J (2011) Essential roles of snap-29 in C. elegans. Dev Biol 355:77–88CrossRefGoogle Scholar
  11. 11.
    Morelli E, Ginefra P, Mastrodonato V, Beznoussenko GV, Rusten TE, Bilder D, Stenmark H, Mironov AA, Vaccari T (2014) Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila. Autophagy 10:2251–2268CrossRefGoogle Scholar
  12. 12.
    Itakura E, Kishi-Itakura C, Mizushima N (2012) The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:1256–1269CrossRefGoogle Scholar
  13. 13.
    Takats S, Nagy P, Varga A, Pircs K, Karpati M, Varga K, Kovacs AL, Hegedus K, Juhasz G (2013) Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J Cell Biol 201:531–539CrossRefGoogle Scholar
  14. 14.
    Morelli E, Mastrodonato V, Beznoussenko GV, Mironov AA, Tognon E, Vaccari T (2016) An essential step of kinetochore formation controlled by the SNARE protein Snap29. EMBO J 35:2223–2237CrossRefGoogle Scholar
  15. 15.
    Kemphues KJ, Raff EC, Raff RA, Kaufman TC (1980) Mutation in a testis-specific beta-tubulin in Drosophila: analysis of its effects on meiosis and map location of the gene. Cell 21:445–451CrossRefGoogle Scholar
  16. 16.
    Muller HA (2008) Immunolabeling of embryos. Methods Mol Biol 420:207–218CrossRefGoogle Scholar
  17. 17.
    Spratford CM, Kumar JP (2014) Dissection and immunostaining of imaginal discs from Drosophila melanogaster. J Vis Exp 91:51792Google Scholar
  18. 18.
    Hime GR, Brill JA, Fuller MT (1996) Assembly of ring canals in the male germ line from structural components of the contractile ring. J Cell Sci 109(Pt 12):2779–2788PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Biological, Environmental, and Earth SciencesUniversity of Southern MississippiHattiesburgUSA
  2. 2.Department of BiologyUniversity of Toronto MississaugaMississaugaCanada

Personalised recommendations