Advertisement

SNAREs pp 379-389 | Cite as

Studies of the Secretory Machinery Dynamics by Total Internal Reflection Fluorescence Microscopy in Bovine Adrenal Chromaffin Cells

  • José Villanueva
  • Yolanda Gimenez-Molina
  • Luis M. Gutiérrez
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1860)

Abstract

Cultured bovine chromaffin cells have been tested as a successful neuroendocrine model to study the secretory process. Changes in the dynamics of the secretory vesicles and the exocytotic machinery microdomains could be studied in control and stimulated conditions using appropriate molecular tools such as fluorescent SNARE protein expression or fluorochrome vesicular labeling in these neuroendocrine cells. Since most of these changes occur in or near the plasma membrane, the use of the total internal reflection fluorescent microscopy (TIRFM) and the implement of particle motion analysis could be essential tools to study the structural and dynamic changes of secretory machinery related with its function in this exocytotic cell model.

Key words

TIRFM Evanescent field Exocytotic events SNARE proteins MSD Diffusion coefficient Chromaffin granules Chromaffin cells 

Notes

Acknowledgments

This study was supported by grants from the Spanish Ministerio de Economía y Competitividad (BFU2015-63684-P, MINECO, FEDER, UE) to LMG.

References

  1. 1.
    Trifaro JM, Bader MF, Doucet JP (1985) Chromaffin cell cytoskeleton: its possible role in secretion. Can J Biochem Cell Biol 63:661–679CrossRefGoogle Scholar
  2. 2.
    Weber T, Zemelman BV, Mcnew JA et al (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772CrossRefGoogle Scholar
  3. 3.
    Giner D, Neco P, Frances MM et al (2005) Real-time dynamics of the F-actin cytoskeleton during secretion from chromaffin cells. J Cell Sci 118:2871–2880CrossRefGoogle Scholar
  4. 4.
    Lopez I, Ortiz JA, Villanueva J et al (2009) Vesicle motion and fusion are altered in chromaffin cells with increased SNARE cluster dynamics. Traffic 10:172–185CrossRefGoogle Scholar
  5. 5.
    Oheim M, Loerke D, Stuhmer W et al (1998) The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur Biophys J 27:83–98CrossRefGoogle Scholar
  6. 6.
    Steyer JA, Horstmann H, Almers W (1997) Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388:474–478CrossRefGoogle Scholar
  7. 7.
    Criado M, Gil A, Viniegra S et al (1999) A single amino acid near the C terminus of the synaptosomeassociated protein of 25 kDa (SNAP-25) is essential for exocytosis in chromaffin cells. Proc Natl Acad Sci U S A 96:7256–7261CrossRefGoogle Scholar
  8. 8.
    Villanueva J, Torres V, Torregrosa-Hetland CJ et al (2012) F-actin-myosin II inhibitors affect Chromaffin granule plasma membrane distance and fusion kinetics by retraction of the cytoskeletal cortex. J Mol Neurosci 48:328–338CrossRefGoogle Scholar
  9. 9.
    Garcia-Martinez V, Villanueva J, Torregrosa-Hetland CJ et al (2013) Lipid metabolites enhance secretion acting on SNARE microdomains and altering the extent and kinetics of single release events in bovine adrenal chromaffin cells. PLoS One 8:e75845CrossRefGoogle Scholar
  10. 10.
    Bark IC, Wilson MC (1994) Human cDNA clones encoding two different isoforms of the nerve terminal protein SNAP-25. Gene 139:291–292CrossRefGoogle Scholar
  11. 11.
    Neco P, Giner D, Del Mar FM et al (2003) Differential participation of actin- and tubulin-based vesicle transport systems during secretion in bovine chromaffin cells. Eur J Neurosci 18:733–742CrossRefGoogle Scholar
  12. 12.
    Neco P, Giner D, Viniegra S et al (2004) New roles of myosin II during vesicle transport and fusion in chromaffin cells. J Biol Chem 279:27450–27457CrossRefGoogle Scholar
  13. 13.
    Almazan G, Aunis D, Garcia AG et al (1984) Effects of collagenase on the release of [3H]-noradrenaline from bovine cultured adrenal chromaffin cells. Br J Pharmacol 81:599–610CrossRefGoogle Scholar
  14. 14.
    Becherer U, Moser T, Stuhmer W et al (2003) Calcium regulates exocytosis at the level of single vesicles. Nat Neurosci 6:846–853CrossRefGoogle Scholar
  15. 15.
    Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J 60:910–921CrossRefGoogle Scholar
  16. 16.
    Giner D, Lopez I, Villanueva J et al (2007) Vesicle movements are governed by the size and dynamics of F-actin cytoskeletal structures in bovine chromaffin cells. Neuroscience 146:659–669CrossRefGoogle Scholar
  17. 17.
    Henkel AW, Upmann I, Bartl CR et al (2006) Light-induced exocytosis in cell development and differentiation. J Cell Biochem 97:1393–1406CrossRefGoogle Scholar
  18. 18.
    Mosharov EV, Sulzer D (2005) Analysis of exocytotic events recorded by amperometry. Nat Methods 2:651–658CrossRefGoogle Scholar
  19. 19.
    Steyer JA, Almers W (1999) Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy. Biophys J 76:2262–2271CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • José Villanueva
    • 1
  • Yolanda Gimenez-Molina
    • 1
  • Luis M. Gutiérrez
    • 1
  1. 1.Instituto de NeurocienciasCentro Mixto CSIC-Universidad Miguel HernándezSant Joan d′AlacantSpain

Personalised recommendations