Advertisement

Alcohol-Induced Epigenetic Changes in Cancer

  • Ramona G. Dumitrescu
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1856)

Abstract

Chronic, heavy alcohol consumption is associated with serious negative health effects, including the development of several cancer types. One of the pathways affected by alcohol toxicity is the one-carbon metabolism. The alcohol-induced impairment of this metabolic pathway results in epigenetic changes associated with cancer development. These epigenetic changes are induced by folate deficiency and by products of the ethanol metabolism. The changes induced by long-term heavy ethanol consumption result in elevations of homocysteine and S-adenosyl-homocysteine (SAH) and reductions in S-adenosylmethionine (SAM) and antioxidant glutathione (GSH) levels, leading to abnormal promoter gene hypermethylation, global hypomethylation, and metabolic insufficiency of antioxidant defense mechanisms. In addition, reactive oxygen species (ROS) generated during the ethanol metabolism induce alterations in DNA methylation patterns that play a critical role in cancer development. Specific epigenetic changes in esophageal, hepatic, and colorectal cancers have been detected in blood samples and proposed to be used clinically as epigenetic biomarkers for diagnosis and prognosis of these cancers. Also, genetic variants of genes involved in one-carbon metabolism and ethanol metabolism were found to modulate the relationship between alcohol-induced epigenetic changes and cancer risk. Furthermore, alcohol metabolism products have been associated with an increase in NADH levels, which lead to histone modifications and changes in gene expression that in turn influence cancer susceptibility. Chronic excessive use of alcohol also affects selected members of the family of microRNAs, and as miRNAs could act as epigenetic regulators, this may play an important role in carcinogenesis. In conclusion, targeting alcohol-induced epigenetic changes in several cancer types could make available clinical tools for the diagnosis, prognosis, and treatment of these cancers, with an important role in precision medicine.

Key words

Heavy alcohol consumption One-carbon metabolism Ethanol metabolism Genetic variants DNA methylation Histone modifications miRNAs 

References

  1. 1.
    World Health Organization (WHO) (2014) Global Status Report on Alcohol and Health. p. XIV. 2014 ed. Available at: http://www.who.int/substance_abuse/publications/global_alcohol_report/msb_gsr_2014_1.pdf?ua=1. Last Accessed 21 Sept 2017
  2. 2.
    World Health Organization (WHO) (2014) Global Status Report on Alcohol and Health. p. XIII. 2014 ed. Available at: http://www.who.int/substance_abuse/publications/global_alcohol_report/msb_gsr_2014_1.pdf?ua=1. Last Accessed 21 Sept 2017
  3. 3.
    American Cancer Society (2017) Cancer facts and figures 2017. Available at: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2017.html. Last Accessed 21 Sept 2017
  4. 4.
    Kruman II, Fowler AK (2014) Impaired one carbon metabolism and DNA methylation in alcohol toxicity. J Neurochem 129(5):770–780Google Scholar
  5. 5.
    Stover PJ (2009) One-carbon metabolism-genome interactions in folate-associated pathologies. J Nutr 139:2402–2405Google Scholar
  6. 6.
    Szyf M (2011) The early life social environment and DNA methylation: DNA methylation mediating the long-term impact of social environments early in life. Epigenetics 6(8):971–978Google Scholar
  7. 7.
    Giovannucci E (2004) Alcohol, one-carbon metabolism, and colorectal cancer: recent insights from molecular studies. J Nutr 134(9):2475S–2481SGoogle Scholar
  8. 8.
    Kharbanda KK (2009) Alcoholic liver disease and methionine metabolism. Semin Liver Dis 29(2):155–165Google Scholar
  9. 9.
    Seitz HK, Stickel F (2009) Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7(8):599–612Google Scholar
  10. 10.
    Halsted CH, Medici V (2011) Vitamin-dependent methionine metabolism and alcoholic liver disease. Adv Nutr 2(5):421–427Google Scholar
  11. 11.
    Halsted CH, Medici V (2012) Aberrant hepatic methionine metabolism and gene methylation in the pathogenesis and treatment of alcoholic steatohepatitis. Int J Hepatol 2012:959746Google Scholar
  12. 12.
    Zakhari S (2013) Alcohol metabolism and epigenetics changes. Alcohol Res 35(1):6–16Google Scholar
  13. 13.
    Yang H, Nie Y, Li Y, Wan YJ (2010a) Histone modification-mediated CYP2E1 gene expression and apoptosis of HepG2 cells. Exp Biol Med (Maywood) 235(1):32–39Google Scholar
  14. 14.
    Cederbaum AI (2012) Alcohol metabolism. Clin Liver Dis 16(4):667–685Google Scholar
  15. 15.
    Zimatkin SM, Pronko SP, Vasiliou V, Gonzalez FJ, Deitrich RA (2006) Enzymatic mechanisms of ethanol oxidation in the brain. Alcohol Clin Exp Res 30(9):1500–1505Google Scholar
  16. 16.
    Lu SC, Mato JM (2005) Role of methionine adenosyltransferase and S-adenosylmethionine in alcohol-associated liver cancer. Alcohol 35(3):227–234Google Scholar
  17. 17.
    Mason JB, Choi SW (2005) Effects of alcohol on folate metabolism: implications for carcinogenesis. Alcohol 35(3):235–241Google Scholar
  18. 18.
    Ziech D, Franco R, Pappa A, Panayiotidis MI (2011) Reactive oxygen species (ROS)--induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res 711(1–2):167–173Google Scholar
  19. 19.
    Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI (2008) Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett 266(1):6–11Google Scholar
  20. 20.
    Kawai K, Li YS, Song MF, Kasai H (2010) DNA methylation by dimethyl sulfoxide and methionine sulfoxide triggered by hydroxyl radical and implications for epigenetic modifications. Bioorg Med Chem Lett 20(1):260–265Google Scholar
  21. 21.
    Toyokuni S (2008) Molecular mechanisms of oxidative stress-induced carcinogenesis: from epidemiology to oxygenomics. IUBMB Life 60(7):441–447Google Scholar
  22. 22.
    Puri SK, Si L, Fan CY, Hanna E (2005) Aberrant promoter hypermethylation of multiple genes in head squamous cell carcinoma. Am J Otolaryngol 26:12–17Google Scholar
  23. 23.
    Varela-Rey M, Woodhoo A, Martinez-Chantar ML, Mato JM, Lu SC (2013) Alcohol, DNA methylation, and cancer. Alcohol Res 35(1):25–35Google Scholar
  24. 24.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386Google Scholar
  25. 25.
    Pennathur A, Gibson MK, Jobe BA, Luketich JD (2013) Oesophageal carcinoma. Lancet 381(9864):400–412Google Scholar
  26. 26.
    Pelucchi C, Gallus S, Garavello W, Bosetti C, La Vecchia C (2006) Cancer risk associated with alcohol and tobacco use: focus on upper aero-digestive tract and liver. Alcohol Res Health 29(3):193–198Google Scholar
  27. 27.
    Anantharaman D, Marron M, Lagiou P, Samoli E, Ahrens W, Pohlabeln H, Slamova A, Schejbalova M, Merletti F, Richiardi L, Kjaerheim K, Castellsague X, Agudo A, Talamini R, Barzan L, Macfarlane TV, Tickle M, Simonato L, Canova C, Conway DI, McKinney PA, Thomson P, Znaor A, Healy CM, McCartan BE, Hashibe M, Brennan P, Macfarlane GJ (2011) Population attributable risk of tobacco and alcohol for upper aerodigestive tract cancer. Oral Oncol 47(8):725–731Google Scholar
  28. 28.
    Bagnardi V, Blangiardo M, La Vecchia C, Corrao G (2001) A meta-analysis of alcohol drinking and cancer risk. Br J Cancer 85(11):1700–1705Google Scholar
  29. 29.
    Ma K, Cao B, Guo M (2016) The detective, prognostic, and predictive value of DNA methylation in human esophageal squamous cell carcinoma. Clin Epigenetics 8:43Google Scholar
  30. 30.
    Liu Y, Chen H, Sun Z, Chen X (2015) Molecular mechanisms of ethanol-associated oro-esophageal squamous cell carcinoma. Cancer Lett 361(2):164–173Google Scholar
  31. 31.
    Oze I, Matsuo K, Suzuki T, Kawase T, Watanabe M, Hiraki A, Ito H, Hosono S, Ozawa T, Hatooka S, Yatabe Y, Hasegawa Y, Shinoda M, Kiura K, Tajima K, Tanimoto M, Tanaka H (2009) Impact of multiple alcohol dehydrogenase gene polymorphisms on risk of upper aerodigestive tract cancers in a Japanese population. Cancer Epidemiol Biomark Prev 18(11):3097–3102Google Scholar
  32. 32.
    Tanaka F, Yamamoto K, Suzuki S, Inoue H, Tsurumaru M, Kajiyama Y, Kato H, Igaki H, Furuta K, Fujita H, Tanaka T, Tanaka Y, Kawashima Y, Natsugoe S, Setoyama T, Tokudome S, Mimori K, Haraguchi N, Ishii H, Mori M (2010) Strong interaction between the effects of alcohol consumption and smoking on oesophageal squamous cell carcinoma among individuals with ADH1B and/or ALDH2 risk alleles. Gut 59(11):1457–1464Google Scholar
  33. 33.
    Wu C, Kraft P, Zhai K, Chang J, Wang Z, Li Y, Hu Z, He Z, Jia W, Abnet CC, Liang L, Hu N, Miao X, Zhou Y, Liu Z, Zhan Q, Liu Y, Qiao Y, Zhou Y, Jin G, Guo C, Lu C, Yang H, Fu J, Yu D, Freedman ND, Ding T, Tan W, Goldstein AM, Wu T, Shen H, Ke Y, Zeng Y, Chanock SJ, Taylor PR, Lin D (2012) Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions. Nat Genet 44(10):1090–1097Google Scholar
  34. 34.
    Pandeya N, Williams G, Green AC, Webb PM, Whiteman DC (2009) Alcohol consumption and the risks of adenocarcinoma and squamous cell carcinoma of the esophagus. Gastroenterology 136:1215–1224Google Scholar
  35. 35.
    Ibiebele TI, Hughes MC, Pandeya N, Zhao Z, Montgomery G, Hayward N, Green AC, Whiteman DC, Webb PM, Study of Digestive Health; Australian Cancer Study (2011) High intake of folate from food sources is associated with reduced risk of esophageal cancer in an Australian population. J Nutr 141(2):274–283Google Scholar
  36. 36.
    Liu YX, Wang B, Wan MH, Tang WF, Huang FK, Li C (2011) Meta-analysis of the relationship between the Metholenetetrahydrofolate reductase C677T genetic polymorphism, folate intake and esophageal cancer. Asian Pac J Cancer Prev 12(1):247–252Google Scholar
  37. 37.
    Zhao P, Lin F, Li Z, Lin B, Lin J, Luo R (2011) Folate intake, methylenetetrahydrofolate reductase polymorphisms, and risk of esophageal cancer. Asian Pac J Cancer Prev 12(8):2019–2023Google Scholar
  38. 38.
    Chang SC, Chang PY, Butler B, Goldstein BY, Mu L, Cai L, You NC, Baecker A, Yu SZ, Heber D, Lu QY, Li L, Greenland S, Zhang ZF (2014) Single nucleotide polymorphisms of one-carbon metabolism and cancers of the esophagus, stomach, and liver in a Chinese population. PLoS One 9(10):e109235Google Scholar
  39. 39.
    Fanidi A, Relton C, Ueland PM, Midttun O, Vollset SE, Travis RC, Trichopoulou A, Lagiou P, Trichopoulos D, Bueno-de-Mesquita HB, Ros M, Boeing H, Tumino R, Panico S, Palli D, Sieri S, Vineis P, Sánchez MJ, Huerta JM, Barricarte Gurrea A, Luján-Barroso L, Quiros JR, Tjønneland A, Halkjær J, Boutron-Ruault MC, Clavel-Chapelon F, Cadeau C, Weiderpass E, Johansson M, Riboli E, Brennan P, Johansson M (2015) A prospective study of one-carbon metabolism biomarkers and cancer of the head and neck and esophagus. Int J Cancer 136(4):915–927Google Scholar
  40. 40.
    Arantes LM, de Carvalho AC, Melendez ME, Carvalho AL, Goloni-Bertollo EM (2014) Methylation as a biomarker for head and neck cancer. Oral Oncol 50(6):587–592Google Scholar
  41. 41.
    American Cancer Society (2017) Cancer Facts and Figures 2017. pg17 Available at: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2017.html. Last Accessed 21 Sept 2017
  42. 42.
    Moghe A, Joshi-Barve S, Ghare S, Gobejishvili L, Kirpich I, McClain CJ, Barve S (2011) Histone modifications and alcohol-induced liver disease: are altered nutrients the missing link? World J Gastroenterol 17(20):2465–2472Google Scholar
  43. 43.
    Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner EA, Schroeder I, Factor VM, Thorgeirsson SS (2007) Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 117(9):2713–2722Google Scholar
  44. 44.
    Villanueva A, Portela A, Sayols S, Battiston C, Hoshida Y, Mendez-Gonzalez J, Imbeaud S, Letouze E, Hernandez-Gea V, Cornella H, Pinyol R, Sole M, Fuster J, Zucman-Rossi J, Mazzaferro V, Esteller M, Llovet JM, HEPTROMIC Consortium (2015) DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology 61(6):1945–1956Google Scholar
  45. 45.
    Hernandez-Vargas H, Lambert MP, Le Calvez-Kelm F, Gouysse G, McKay-Chopin S, Tavtigian SV, Scoazec JY, Herceg Z (2010) Hepatocellular carcinoma displays distinct DNA methylation signatures with potential as clinical predictors. PLoS One 5(3):e9749Google Scholar
  46. 46.
    Udali S, Guarini P, Ruzzenente A, Ferrarini A, Guglielmi A, Lotto V, Tononi P, Pattini P, Moruzzi S, Campagnaro T, Conci S, Olivieri O, Corrocher R, Delledonne M, Choi SW, Friso S (2015) DNA methylation and gene expression profiles show novel regulatory pathways in hepatocellular carcinoma. Clin Epigenetics 7:43Google Scholar
  47. 47.
    Quan X, Lim SO, Jung G (2011) Reactive oxygen species downregulate catalase expression via methylation of a CpG island in the Oct-1 promoter. FEBS Lett 585(21):3436–3441Google Scholar
  48. 48.
    Lim SO, Gu JM, Kim MS, Kim HS, Park YN, Park CK, Cho JW, Park YM, Jung G (2008) Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 135(6):2128–2140 2140.e1-8Google Scholar
  49. 49.
    Zhao RC, Zhou J, He JY, Wei YG, Qin Y, Li B (2016) Aberrant promoter methylation of SOCS-1 gene may contribute to the pathogenesis of hepatocellular carcinoma: a meta-analysis. J BUON 21(1):142–151Google Scholar
  50. 50.
    American Cancer Society. Cancer Facts & Figures 2017. Pg32 Available at: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2017.html. Last Accessed 21 Sept 2017
  51. 51.
    Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Altieri A, Cogliano V, WHO International Agency for Research on Cancer Monograph Working Group (2007) Carcinogenicity of alcoholic beverages. Lancet Oncol 8(4):292–293Google Scholar
  52. 52.
    United States Department of Agriculture (2016) Dietary Guidelines for Americans 2015–2020. https://health.gov/dietaryguidelines/2015/guidelines/
  53. 53.
    Schernhammer ES, Giovannucci E, Kawasaki T, Rosner B, Fuchs CS, Ogino S (2010) Dietary folate, alcohol and B vitamins in relation to LINE-1 hypomethylation in colon cancer. Gut 59(6):794–799Google Scholar
  54. 54.
    Nishihara R, Wang M, Qian ZR, Baba Y, Yamauchi M, Mima K, Sukawa Y, Kim SA, Inamura K, Zhang X, Wu K, Giovannucci EL, Chan AT, Fuchs CS, Ogino S, Schernhammer ES (2014) Alcohol, one-carbon nutrient intake, and risk of colorectal cancer according to tumor methylation level of IGF2 differentially methylated region. Am J Clin Nutr 100(6):1479–1488Google Scholar
  55. 55.
    van Engeland M, Weijenberg MP, Roemen GM, Brink M, de Bruine AP, Goldbohm RA, van den Brandt PA, Baylin SB, de Goeij AF, Herman JG (2003) Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res 63(12):3133–3137Google Scholar
  56. 56.
    Ng JM, Yu J (2015) Promoter hypermethylation of tumour suppressor genes as potential biomarkers in colorectal cancer. Int J Mol Sci 16(2):2472–2496Google Scholar
  57. 57.
    Matsuo K, Ito H, Wakai K, Hirose K, Saito T, Suzuki T, Kato T, Hirai T, Kanemitsu Y, Hamajima H, Tajima K (2005) One-carbon metabolism related gene polymorphisms interact with alcohol drinking to influence the risk of colorectal cancer in Japan. Carcinogenesis 26(12):2164–2171Google Scholar
  58. 58.
    Iacopetta B, Heyworth J, Girschik J, Grieu F, Clayforth C, Fritschi L (2009) The MTHFR C677T and DeltaDNMT3B C-149T polymorphisms confer different risks for right- and left-sided colorectal cancer. Int J Cancer 125(1):84–90Google Scholar
  59. 59.
    Kim J, Cho YA, Kim DH, Lee BH, Hwang DY, Jeong J, Lee HJ, Matsuo K, Tajima K, Ahn YO (2012) Dietary intake of folate and alcohol, MTHFR C677T polymorphism, and colorectal cancer risk in Korea. Am J Clin Nutr 95(2):405–412Google Scholar
  60. 60.
    Curtin K, Slattery ML, Ulrich CM, Bigler J, Levin TR, Wolff RK, Albertsen H, Potter JD, Samowitz WS (2007) Genetic polymorphisms in one-carbon metabolism: associations with CpG island methylator phenotype (CIMP) in colon cancer and the modifying effects of diet. Carcinogenesis 28(8):1672–1679Google Scholar
  61. 61.
    Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27(32):5459–5468Google Scholar
  62. 62.
    Dik S, Scheepers PT, Godderis L (2012) Effects of environmental stressors on histone modifications and their relevance to carcinogenesis: a systematic review. Crit Rev Toxicol 42(6):491–500Google Scholar
  63. 63.
    Mandrekar P (2011) Epigenetic regulation in alcoholic liver disease. World J Gastroenterol 17(20):2456–2464Google Scholar
  64. 64.
    Bardag-Gorce F, Oliva J, Dedes J, Li J, French BA, French SW (2009) Chronic ethanol feeding alters hepatocyte memory which is not altered by acute feeding. Alcohol Clin Exp Res 33(4):684–692Google Scholar
  65. 65.
    Pal-Bhadra M, Bhadra U, Jackson DE, Mamatha L, Park PH, Shukla SD (2007) Distinct methylation patterns in histone H3 at Lys-4 and Lys-9 correlate with up- & down-regulation of genes by ethanol in hepatocytes. Life Sci 81(12):979–987Google Scholar
  66. 66.
    D'Souza W, Saranath D (2015) Clinical implications of epigenetic regulation in oral cancer. Oral Oncol 51(12):1061–1068Google Scholar
  67. 67.
    Chou SJ, Alawi F (2011) Expression of DNA damage response biomarkers during oral carcinogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111(3):346–353Google Scholar
  68. 68.
    Sakuma T, Uzawa K, Onda T, Shiiba M, Yokoe H, Shibahara T, Tanzawa H (2006) Aberrant expression of histone deacetylase 6 in oral squamous cell carcinoma. Int J Oncol 29(1):117–124Google Scholar
  69. 69.
    Staibano S, Mascolo M, Rocco A, Lo Muzio L, Ilardi G, Siano M, Pannone G, Vecchione ML, Nugnes L, Califano L, Zamparese R, Bufo P, De Rosa G (2011) The proliferation marker chromatin assembly Factor-1 is of clinical value in predicting the biological behaviour of salivary gland tumours. Oncol Rep 25(1):13–22Google Scholar
  70. 70.
    Herceg Z, Paliwal A (2011) Epigenetic mechanisms in hepatocellular carcinoma: how environmental factors influence the epigenome. Mutat Res 727(3):55–61Google Scholar
  71. 71.
    Magerl C, Ellinger J, Braunschweig T, Kremmer E, Koch LK, Höller T, Büttner R, Lüscher B, Gutgemann I (2010) H3K4 dimethylation in hepatocellular carcinoma is rare compared with other hepatobiliary and gastrointestinal carcinomas and correlates with expression of the methylase Ash2 and the demethylase LSD1. Hum Pathol 41(2):181–189Google Scholar
  72. 72.
    Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450Google Scholar
  73. 73.
    Fontana L, Sorrentino A, Condorelli G, Peschle C (2008) Role of microRNAs in haemopoiesis, heart hypertrophy and cancer. Biochem Soc Trans 36:1206–1210Google Scholar
  74. 74.
    Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21:452–460Google Scholar
  75. 75.
    Humphreys DT, Westman BJ, Martin DI, Preiss T (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A 102:16961–16966Google Scholar
  76. 76.
    Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723Google Scholar
  77. 77.
    Nottrott S, Simard MJ, Richter JD (2006) Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13:1108–1114Google Scholar
  78. 78.
    Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302(1):1–12Google Scholar
  79. 79.
    Baer C, Claus R, Plass C (2013) Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res 73(2):473–477Google Scholar
  80. 80.
    Plaisier CL, Pan M, Baliga NS (2012) A miRNA-regulatory network explains how dysregulated miRNAs perturb oncogenic processes across diverse cancers. Genome Res 22(11):2302–2314Google Scholar
  81. 81.
    Miozzo M, Vaira V, Sirchia SM (2015) Epigenetic alterations in cancer and personalized cancer treatment. Future Oncol 11(2):333–348Google Scholar
  82. 82.
    Miranda RC, Pietrzykowski AZ, Tang Y, Sathyan P, Mayfield D, Keshavarzian A, Sampson W, Hereld D (2010) MicroRNAs: master regulators of ethanol abuse and toxicity? Alcohol Clin Exp Res 34(4):575–587Google Scholar
  83. 83.
    Bala S, Marcos M, Szabo G (2009) Emerging role of microRNAs in liver diseases. World J Gastroenterol 15(45):5633–5640Google Scholar
  84. 84.
    Szabo G, Bala S (2013) MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 10(9):542–552Google Scholar
  85. 85.
    Bala S, Marcos M, Kodys K, Csak T, Catalano D, Mandrekar P, Szabo G (2011) Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor {alpha} (TNF{alpha}) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 286(2):1436–1444Google Scholar
  86. 86.
    Szabo G, Satishchandran A (2015) MicroRNAs in alcoholic liver disease. Semin Liver Dis 35(1):36–42Google Scholar
  87. 87.
    Miranda RC (2014) MicroRNAs and ethanol toxicity. Int Rev Neurobiol 115:245–284Google Scholar
  88. 88.
    Kunej T, Godnic I, Ferdin J, Horvat S, Dovc P, Calin GA (2011) Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res 717(1–2):77–84Google Scholar
  89. 89.
    Augello C, Vaira V, Caruso L, Destro A, Maggioni M, Park YN, Montorsi M, Santambrogio R, Roncalli M, Bosari S (2012) MicroRNA profiling of hepatocarcinogenesis identifies C19MC cluster as a novel prognostic biomarker in hepatocellular carcinoma. Liver Int 32(5):772–782Google Scholar
  90. 90.
    He Y, Cui Y, Wang W, Gu J, Guo S, Ma K, Luo X (2011) Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-mir-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia 13(9):841–853Google Scholar
  91. 91.
    Pogribny IP, Rusyn I (2014) Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett 342(2):223–230Google Scholar
  92. 92.
    Van Roosbroeck K, Calin GA (2017) Cancer hallmarks and MicroRNAs: the therapeutic connection. Adv Cancer Res 135:119–149Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ramona G. Dumitrescu
    • 1
  1. 1.Kelly Government SolutionsBethesdaUSA

Personalised recommendations