Advertisement

Interplay Between Genetic and Epigenetic Changes in Breast Cancer Subtypes

  • Ramona G. Dumitrescu
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1856)

Abstract

Breast cancer is the most common cancer among women and represents one of the top five leading causes of cancer-related mortality. Inherited and acquired genetic mutations as well as epigenetic aberrations are known to be important contributors to the development and progression of breast cancer. Recent developments in high-throughput technologies have increased our understanding of the molecular changes in breast cancer, leading to the identification of distinctive genetic and epigenetic modifications in different breast cancer molecular subtypes. These genetic and epigenetic changes in luminal A, luminal B, ERBB2/HER2-enriched, basal-like, and normal-like breast cancer subtypes are discussed in this chapter. Furthermore, recent epigenome studies provided more information about further stratification of breast cancer subtypes, with essential role in the appropriate diagnosis and treatment of breast cancer. Thus, the inclusion of both genetic and epigenetic information in breast cancer clinical care could provide critical scientific base for precision medicine in breast cancer.

Key words

Breast cancer Genetic mutations Epigenetic changes Luminal A Luminal B ERBB2/HER2-enriched Basal-like and normal-like breast cancer subtypes Epigenome studies Precision medicine 

References

  1. 1.
    SEER cancer statistics factsheets: breast cancer. National Cancer Institute, 2017. https://seer.cancer.gov/statfacts/html/breast.html. Accessed 20 Sep 2017
  2. 2.
    Stover DG, Wagle N (2015) Precision medicine in breast cancer: genes, genomes, and the future of genomically driven treatments. Curr Oncol Rep 17(4):15Google Scholar
  3. 3.
    Langevin SM, Kelsey KT (2013) The fate is not always written in the genes: epigenomics in epidemiologic studies. Environ Mol Mutagen 54(7):533–541Google Scholar
  4. 4.
    Esteller M, Fraga MF, Guo M, Garcia-Foncillas J, Hedenfalk I, Godwin AK, Trojan J, Vaurs-Barrière C, Bignon YJ, Ramus S, Benitez J, Caldes T, Akiyama Y, Yuasa Y, Launonen V, Canal MJ, Rodriguez R, Capella G, Peinado MA, Borg A, Aaltonen LA, Ponder BA, Baylin SB, Herman JG (2001) DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet 10(26):3001–3007Google Scholar
  5. 5.
    Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266(5182):66–71Google Scholar
  6. 6.
    Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, Nguyen K, Seal S, Tran T, Averill D et al (1994) Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265(5181):2088–2090Google Scholar
  7. 7.
    Teschendorff AE, Caldas C (2009) The breast cancer somatic 'muta-ome': tackling the complexity. Breast Cancer Res 11(2):301Google Scholar
  8. 8.
    Collins N, McManus R, Wooster R, Mangion J, Seal S, Lakhani SR, Ormiston W, Daly PA, Ford D, Easton DF et al (1995) Consistent loss of the wild type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12-13. Oncogene 10:1673–1675Google Scholar
  9. 9.
    Smith SA, Easton DF, Evans DG, Ponder BA (1992) Allele losses in the region 17q12-21 in familial breast and ovarian cancer involve the wild-type chromosome. Nat Genet 2:128–131Google Scholar
  10. 10.
    Rebbeck TR, Mitra N, Wan F, Sinilnikova OM, Healey S, McGuffog L, Mazoyer S, Chenevix-Trench G, Easton DF, Antoniou AC et al (2015) Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA 313(13):1347–1361Google Scholar
  11. 11.
    Mavaddat N, Pharoah PD, Michailidou K, Tyrer J, Brook MN, Bolla M, Wang Q, Dennis J, Dunning AM, Shah M et al (2015) Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst 107(5):djv036Google Scholar
  12. 12.
    Xu Z, Taylor JA (2014) Genome-wide age-related DNA methylation changes in blood and other tissues relate to histone modification, expression and cancer. Carcinogenesis 35(2):356–364Google Scholar
  13. 13.
    Ambrosone CB, Hong CC, Goodwin PJ (2015) Host factors and risk of breast cancer recurrence: genetic, epigenetic and biologic factors and breast cancer outcomes. Adv Exp Med Biol 862:143–153Google Scholar
  14. 14.
    Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA, Gabrielson E, Schutte M, Baylin SB, Herman JG (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92(7):564–569Google Scholar
  15. 15.
    Stefansson OA, Jonasson JG, Olafsdottir K, Hilmarsdottir H, Olafsdottir G, Esteller M, Johannsson OT, Eyfjord JE (2011) CpG island hypermethylation of BRCA1 and loss of pRb as co-occurring events in basal/triple-negative breast cancer. Epigenetics 6(5):638–649Google Scholar
  16. 16.
    Widschwendter M, Jones PA (2002) DNA methylation and breast carcinogenesis. Oncogene 21(35):5462–5482Google Scholar
  17. 17.
    Stefansson OA, Esteller M (2013) Epigenetic modifications in breast cancer and their role in personalized medicine. Am J Pathol 183(4):1052–1063Google Scholar
  18. 18.
    Zeidler M, Varambally S, Cao Q, Chinnaiyan AM, Ferguson DO, Merajver SD, Kleer CG (2005) The Polycomb group protein EZH2 impairs DNA repair in breast epithelial cells. Neoplasia 7(11):1011–1019Google Scholar
  19. 19.
    Li X, Gonzalez ME, Toy K, Filzen T, Merajver SD, Kleer CG (2009) Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia. Am J Pathol 175(3):1246–1254Google Scholar
  20. 20.
    Chang CJ, Yang JY, Xia W, Chen CT, Xie X, Chao CH, Woodward WA, Hsu JM, Hortobagyi GN, Hung MC (2011) EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-β-catenin signaling. Cancer Cell 19(1):86–100Google Scholar
  21. 21.
    Reis-Filho JS, Pusztai L (2011) Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 378(9805):1812–1823Google Scholar
  22. 22.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Børresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752Google Scholar
  23. 23.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100(14):8418–8423Google Scholar
  24. 24.
    Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, Livasy C, Carey LA, Reynolds E, Dressler L, Nobel A, Parker J, Ewend MG, Sawyer LR, Wu J, Liu Y, Nanda R, Tretiakova M, Ruiz Orrico A, Dreher D, Palazzo JP, Perreard L, Nelson E, Mone M, Hansen H, Mullins M, Quackenbush JF, Ellis MJ, Olopade OI, Bernard PS, Perou CM (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96Google Scholar
  25. 25.
    Tamimi RM, Baer HJ, Marotti J, Galan M, Galaburda L, Fu Y, Deitz AC, Connolly JL, Schnitt SJ, Colditz GA, Collins LC (2008) Comparison of molecular phenotypes of ductal carcinoma in situ and invasive breast cancer. Breast Cancer Res 10(4):R67Google Scholar
  26. 26.
    Yu K, Lee CH, Tan PH, Tan P (2004) Conservation of breast cancer molecular subtypes and transcriptional patterns of tumor progression across distinct ethnic populations. Clin Cancer Res 10(16):5508–5517Google Scholar
  27. 27.
    Ihemelandu CU, Leffall LD Jr, Dewitty RL, Naab TJ, Mezghebe HM, Makambi KH, Adams-Campbell L, Frederick WA (2007) Molecular breast cancer subtypes in premenopausal and postmenopausal African-American women: age-specific prevalence and survival. J Surg Res 143(1):109–118Google Scholar
  28. 28.
    Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70Google Scholar
  29. 29.
    Ciriello G, Sinha R, Hoadley KA, Jacobsen AS, Reva B, Perou CM, Sander C, Schultz N (2013) The molecular diversity of luminal a breast tumors. Breast Cancer Res Treat 141(3):409–420Google Scholar
  30. 30.
    Conway K, Edmiston SN, May R, Kuan PF, Chu H, Bryant C, Tse CK, Swift-Scanlan T, Geradts J, Troester MA, Millikan RC (2014) DNA methylation profiling in the Carolina breast cancer study defines cancer subclasses differing in clinicopathologic characteristics and survival. Breast Cancer Res 16(5):450Google Scholar
  31. 31.
    Netanely D, Avraham A, Ben-Baruch A, Evron E, Shamir R (2016) Expression and methylation patterns partition luminal-a breast tumors into distinct prognostic subgroups. Breast Cancer Res 18(1):74Google Scholar
  32. 32.
    Fleischer T, Klajic J, Aure MR, Louhimo R, Pladsen AV, Ottestad L, Touleimat N, Laakso M, Halvorsen AR, Grenaker Alnæs GI, Riis ML, Helland A, Hautaniemi S, Lonning PE, Naume B, Børresen-Dale AL, Tost J, Kristensen VN (2017) DNA methylation signature (SAM40) identifies subgroups of the luminal a breast cancer samples with distinct survival. Oncotarget 8(1):1074–1082Google Scholar
  33. 33.
    Millikan RC, Newman B, Tse CK, Moorman PG, Conway K, Dressler LG, Smith LV, Labbok MH, Geradts J, Bensen JT, Jackson S, Nyante S, Livasy C, Carey L, Earp HS, Perou CM (2008) Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109(1):123–139Google Scholar
  34. 34.
    Perou CM (2010) Molecular stratification of triple-negative breast cancers. Oncologist 15(Suppl 5):39–48Google Scholar
  35. 35.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874Google Scholar
  36. 36.
    Prat A, Pineda E, Adamo B, Galvan P, Fernandez A, Gaba L, Díez M, Viladot M, Arance A, Muñoz M (2015) Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 24(Suppl 2):S26–S35Google Scholar
  37. 37.
    Holm K, Hegardt C, Staaf J, Vallon-Christersson J, Jonsson G, Olsson H, Borg A, Ringner M (2010) Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res 12(3):R36Google Scholar
  38. 38.
    Bediaga NG, Beristain E, Calvo B, Viguri MA, Gutierrez-Corres B, Rezola R, Ruiz-Diaz I, Guerra I, de Pancorbo MM (2016) Luminal B breast cancer subtype displays a dicotomic epigenetic pattern. Springerplus 5:623.  https://doi.org/10.1186/s40064-016-2235-0Google Scholar
  39. 39.
    Gao Y, Jones A, Fasching PA, Ruebner M, Beckmann MW, Widschwendter M, Teschendorff AE (2015) The integrative epigenomic-transcriptomic landscape of ER positive breast cancer. Clin Epigenetics 7:126Google Scholar
  40. 40.
    Prat A, Parker JS, Fan C, Perou CM (2012) PAM50 assay and the three-gene model for identifying the major and clinically relevant molecular subtypes of breast cancer. Breast Cancer Res Treat 135(1):301–306Google Scholar
  41. 41.
    Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, Kiezun A, Kryukov GV, Carter SL, Saksena G, Harris S, Shah RR, Resnick MA, Getz G, Gordenin DA (2013) An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45(9):970–976Google Scholar
  42. 42.
    Kuong KJ, Loeb LA (2013) APOBEC3B mutagenesis in cancer. Nat Genet 45(9):964–965Google Scholar
  43. 43.
    Ithimakin S, Day KC, Malik F, Zen Q, Dawsey SJ, Bersano-Begey TF, Quraishi AA, Ignatoski KW, Daignault S, Davis A, Hall CL, Palanisamy N, Heath AN, Tawakkol N, Luther TK, Clouthier SG, Chadwick WA, Day ML, Kleer CG, Thomas DG, Hayes DF, Korkaya H, Wicha MS (2013) HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: implications for efficacy of adjuvant trastuzumab. Cancer Res 73(5):1635–1646Google Scholar
  44. 44.
    Korkaya H, Wicha MS (2013) HER2 and breast cancer stem cells: more than meets the eye. Cancer Res 73(12):3489–3493Google Scholar
  45. 45.
    Holm K, Grabau D, Lovgren K, Aradottir S, Gruvberger-Saal S, Howlin J, Saal LH, Ethier SP, Bendahl PO, Stal O, Malmström P, Ferno M, Ryden L, Hegardt C, Borg A, Ringner M (2012) Global H3K27 trimethylation and EZH2 abundance in breast tumor subtypes. Mol Oncol 6(5):494–506Google Scholar
  46. 46.
    Ulirsch J, Fan C, Knafl G, Wu MJ, Coleman B, Perou CM, Swift-Scanlan T (2013) Vimentin DNA methylation predicts survival in breast cancer. Breast Cancer Res Treat 137(2):383–396Google Scholar
  47. 47.
    Park SY, Seo AN, Jung HY, Gwak JM, Jung N, Cho NY, Kang GH (2014) Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer. PLoS One 9(6):e100429Google Scholar
  48. 48.
    Ma X, Yu L, Wang P, Yang X (2017) Discovering DNA methylation patterns for long non-coding RNAs associated with cancer subtypes. Comput Biol Chem 69:164–170Google Scholar
  49. 49.
    Anderson WF, Rosenberg PS, Prat A, Perou CM, Sherman ME (2014) How many etiological subtypes of breast cancer: two, three, four, or more? J Natl Cancer Inst 106(8):dju165Google Scholar
  50. 50.
    Prat A, Adamo B, Fan C, Peg V, Vidal M, Galvan P, Vivancos A, Nuciforo P, Palmer HG, Dawood S, Rodon J, Ramon y Cajal S, Del Campo JM, Felip E, Tabernero J, Cortes J (2013) Genomic analyses across six cancer types identify basal-like breast cancer as a unique molecular entity. Sci Rep 3:3544Google Scholar
  51. 51.
    Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MD, Niu B, McLellan MD, Uzunangelov V, Zhang J, Kandoth C, Akbani R, Shen H, Omberg L, Chu A, Margolin AA, Van't Veer LJ, Lopez-Bigas N, Laird PW, Raphael BJ, Ding L, Robertson AG, Byers LA, Mills GB, Weinstein JN, Van Waes C, Chen Z, Collisson EA, Benz CC, Perou CM, Stuart JM, Cancer Genome Atlas Research Network (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158(4):929–944Google Scholar
  52. 52.
    Prat A, Cruz C, Hoadley KA, Díez O, Perou CM, Balmana J (2014) Molecular features of the basal-like breast cancer subtype based on BRCA1 mutation status. Breast Cancer Res Treat 147(1):185–191Google Scholar
  53. 53.
    Ghabach B, Anderson WF, Curtis RE, Huycke MM, Lavigne JA, Dores GM (2010) Adenoid cystic carcinoma of the breast in the United States (1977 to 2006): a population-based cohort study. Breast Cancer Res 12(4):R54Google Scholar
  54. 54.
    Prat A, Adamo B, Cheang MC, Anders CK, Carey LA, Perou CM (2013) Molecular characterization of basal-like and non-basal-like triple-negative breast cancer. Oncologist 18(2):123–133Google Scholar
  55. 55.
    Park SY, Kwon HJ, Choi Y, Lee HE, Kim SW, Kim JH, Kim IA, Jung N, Cho NY, Kang GH (2012) Distinct patterns of promoter CpG island methylation of breast cancer subtypes are associated with stem cell phenotypes. Mod Pathol 25(2):185–196Google Scholar
  56. 56.
    Dong C, Wu Y, Wang Y, Wang C, Kang T, Rychahou PG, Chi YI, Evers BM, Zhou BP (2013) Interaction with Suv39H1 is critical for snail-mediated E-cadherin repression in breast cancer. Oncogene 32(11):1351–1362Google Scholar
  57. 57.
    Rao X, Evans J, Chae H, Pilrose J, Kim S, Yan P, Huang RL, Lai HC, Lin H, Liu Y, Miller D, Rhee JK, Huang YW, Gu F, Gray JW, Huang TM, Nephew KP (2013) CpG island shore methylation regulates caveolin-1 expression in breast cancer. Oncogene 32(38):4519–4528Google Scholar
  58. 58.
    Jeong YJ, Jeong HY, Bong JG, Park SH, Oh HK (2013) Low methylation levels of the SFRP1 gene are associated with the basal-like subtype of breast cancer. Oncol Rep 29(5):1946–1954Google Scholar
  59. 59.
    Zhu X, Shan L, Wang F, Wang J, Wang F, Shen G, Liu X, Wang B, Yuan Y, Ying J, Yang H (2015) Hypermethylation of BRCA1 gene: implication for prognostic biomarker and therapeutic target in sporadic primary triple-negative breast cancer. Breast Cancer Res Treat 150(3):479–486Google Scholar
  60. 60.
    Sandhu R, Rivenbark AG, Mackler RM, Livasy CA, Coleman WB (2014) Dysregulation of microRNA expression drives aberrant DNA hypermethylation in basal-like breast cancer. Int J Oncol 44(2):563–572Google Scholar
  61. 61.
    Poli E, Zhang J, Nwachukwu C, Zheng Y, Adedokun B, Olopade OI, Han YJ (2015) Molecular subtype-specific expression of MicroRNA-29c in breast cancer is associated with CpG dinucleotide methylation of the promoter. PLoS One 10(11):e0142224Google Scholar
  62. 62.
    Chae H, Lee S, Nephew KP, Kim S (2016) Subtype-specific CpG island shore methylation and mutation patterns in 30 breast cancer cell lines. BMC Syst Biol 10(Suppl 4):116Google Scholar
  63. 63.
    Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray JW (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541Google Scholar
  64. 64.
    Davalos V, Martinez-Cardus A, Esteller M (2017) The epigenomic revolution in breast cancer: from single-gene to genome-wide next-generation approaches. Am J Pathol 187(10):2163–2174Google Scholar
  65. 65.
    Xu Z, Bolick SC, DeRoo LA, Weinberg CR, Sandler DP, Taylor JA (2013) Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst 105(10):694–700Google Scholar
  66. 66.
    Fackler MJ, Umbricht CB, Williams D, Argani P, Cruz LA, Merino VF, Teo WW, Zhang Z, Huang P, Visvananthan K, Marks J, Ethier S, Gray JW, Wolff AC, Cope LM, Sukumar S (2011) Genome-wide methylation analysis identifies genes specific to breast cancer hormone receptor status and risk of recurrence. Cancer Res 71(19):6195–6207Google Scholar
  67. 67.
    Ambrosone CB, Young AC, Sucheston LE, Wang D, Yan L, Liu S, Tang L, Hu Q, Freudenheim JL, Shields PG, Morrison CD, Demissie K, Higgins MJ (2014) Genome-wide methylation patterns provide insight into differences in breast tumor biology between American women of African and European ancestry. Oncotarget 5(1):237–248Google Scholar
  68. 68.
    Li Y, Zhang Y, Li S, Lu J, Chen J, Wang Y, Li Y, Xu J, Li X (2015) Genome-wide DNA methylome analysis reveals epigenetically dysregulated non-coding RNAs in human breast cancer. Sci Rep 5:8790Google Scholar
  69. 69.
    van Veldhoven K, Polidoro S, Baglietto L, Severi G, Sacerdote C, Panico S, Mattiello A, Palli D, Masala G, Krogh V, Agnoli C, Tumino R, Frasca G, Flower K, Curry E, Orr N, Tomczyk K, Jones ME, Ashworth A, Swerdlow A, Chadeau-Hyam M, Lund E, Garcia-Closas M, Sandanger TM, Flanagan JM, Vineis P (2015) Epigenome-wide association study reveals decreased average methylation levels years before breast cancer diagnosis. Clin Epigenetics 7(1):67Google Scholar
  70. 70.
    Holm K, Staaf J, Lauss M, Aine M, Lindgren D, Bendahl PO, Vallon-Christersson J, Barkardottir RB, Hoglund M, Borg A, Jonsson G, Ringner M (2016) An integrated genomics analysis of epigenetic subtypes in human breast tumors links DNA methylation patterns to chromatin states in normal mammary cells. Breast Cancer Res 18(1):27Google Scholar
  71. 71.
    Stirzaker C, Zotenko E, Song JZ, Qu W, Nair SS, Locke WJ, Stone A, Armstong NJ, Robinson MD, Dobrovic A, Avery-Kiejda KA, Peters KM, French JD, Stein S, Korbie DJ, Trau M, Forbes JF, Scott RJ, Brown MA, Francis GD, Clark SJ (2015) Methylome sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value. Nat Commun 6:5899Google Scholar
  72. 72.
    Messier TL, Gordon JA, Boyd JR, Tye CE, Browne G, Stein JL, Lian JB, Stein GS (2016) Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes. Oncotarget 7(5):5094–5109Google Scholar
  73. 73.
    Judes G, Dagdemir A, Karsli-Ceppioglu S, Lebert A, Echegut M, Ngollo M, Bignon YJ, Penault-Llorca F, Bernard-Gallon D (2016) H3K4 acetylation, H3K9 acetylation and H3K27 methylation in breast tumor molecular subtypes. Epigenomics 8(7):909–924Google Scholar
  74. 74.
    Zhao QY, Lei PJ, Zhang X, Zheng JY, Wang HY, Zhao J, Li YM, Ye M, Li L, Wei G, Wu M (2016) Global histone modification profiling reveals the epigenomic dynamics during malignant transformation in a four-stage breast cancer model. Clin Epigenetics 8:34.  https://doi.org/10.1186/s13148-016-0201-x eCollection 2016Google Scholar
  75. 75.
    Chen X, Hu H, He L, Yu X, Liu X, Zhong R, Shu M (2016) A novel subtype classification and risk of breast cancer by histone modification profiling. Breast Cancer Res Treat 157(2):267–279Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ramona G. Dumitrescu
    • 1
  1. 1.Kelly Government SolutionsBethesdaUSA

Personalised recommendations