Advertisement

Epigenetic and Genetic Regulation of PDCD1 Gene in Cancer Immunology

  • Alok Mishra
  • Mukesh Verma
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1856)

Abstract

Utilizing biology of PD-1: PD-L1 interaction related pathways for cancer immunotherapy is an emerging concept in cancer research. However, there is limited literature on epigenetic regulation of PD1 gene (PDCD1). Promising data from clinical trials of PD/PDl-1 immunotherapy in melanoma, renal cancers, colorectal and lung cancers has generated a lot of hope for successful treatment of patients. Immunotherapy in cancers has a significant role in strategizing NCI’s Cancer Moonshot Program of US NIH and FDA policies. The cost of the treatment by immunotherapy is extremely high. This preview presents a concise compilation of current knowledge on how the PD-1 gene is regulated in different cancers and infections. We have also discussed about epigenetic regulation of PDCD1 gene, especially the effect of different epigenetic inhibitors of DNA methylation and histone modifications at different steps in PD-1 regulation.

Key words

Epigenetics Immunotherapy PD/PDL-1 and immune check points Oral cancer 

Abbreviations

CTCF

CCCTC-Binding Factor

PD-1

Programed Cell Death-1

TSS

Transcription start site

References

  1. 1.
    Shinohara T, Taniwaki M, Ishida Y, Kawaichi M, Honjo T (1994) Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics 23(3):704–706Google Scholar
  2. 2.
    Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800Google Scholar
  3. 3.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465Google Scholar
  4. 4.
    Taneja SS (2012) Re: safety and activity of anti-PD-L1 antibody in patients with advanced cancer. J Urol 188(6):2148–2149Google Scholar
  5. 5.
    Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, Wong F, Azad NS, Rucki AA, Laheru D, Donehower R, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Greten TF, Duffy AG, Ciombor KK, Eyring AD, Lam BH, Joe A, Kang SP, Holdhoff M, Danilova L, Cope L, Meyer C, Zhou S, Goldberg RM, Armstrong DK, Bever KM, Fader AN, Taube J, Housseau F, Spetzler D, Xiao N, Pardoll DM, Papadopoulos N, Kinzler KW, Eshleman JR, Vogelstein B, Anders RA, Diaz LA Jr (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413Google Scholar
  6. 6.
    Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, Brookes AJ, Tentler D, Kristjansdottir H, Grondal G, Bolstad AI, Svenungsson E, Lundberg I, Sturfelt G, Jonssen A, Truedsson L, Lima G, Alcocer-Varela J, Jonsson R, Gyllensten UB, Harley JB, Alarcon-Segovia D, Steinsson K, Alarcon-Riquelme ME (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32(4):666–669Google Scholar
  7. 7.
    Bally AP, Austin JW, Boss JM (2016) Genetic and epigenetic regulation of PD-1 expression. J Immunol 196(6):2431–2437Google Scholar
  8. 8.
    Maekawa Y, Minato Y, Ishifune C, Kurihara T, Kitamura A, Kojima H, Yagita H, Sakata-Yanagimoto M, Saito T, Taniuchi I, Chiba S, Sone S, Yasutomo K (2008) Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity. Nat Immunol 9(10):1140–1147Google Scholar
  9. 9.
    Xiao G, Deng A, Liu H, Ge G, Liu X (2012) Activator protein 1 suppresses antitumor T-cell function via the induction of programmed death 1. Proc Natl Acad Sci U S A 109(38):15419–15424Google Scholar
  10. 10.
    Oestreich KJ, Yoon H, Ahmed R, Boss JM (2008) NFATc1 regulates PD-1 expression upon T cell activation. J Immunol 181(7):4832–4839Google Scholar
  11. 11.
    Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM, Ali MA, Intlekofer AM, Boss JM, Reiner SL, Weinmann AS, Wherry EJ (2011) Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol 12(7):663–671Google Scholar
  12. 12.
    Lazarevic V, Glimcher LH, Lord GM (2013) T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol 13(11):777–789Google Scholar
  13. 13.
    Lu P, Youngblood BA, Austin JW, Mohammed AU, Butler R, Ahmed R, Boss JM (2014) Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection. J Exp Med 211(3):515–527Google Scholar
  14. 14.
    Rao RR, Li Q, Gubbels Bupp MR, Shrikant PA (2012) Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation. Immunity 36(3):374–387Google Scholar
  15. 15.
    Badoual C, Hans S, Merillon N, Van Ryswick C, Ravel P, Benhamouda N, Levionnois E, Nizard M, Si-Mohamed A, Besnier N, Gey A, Rotem-Yehudar R, Pere H, Tran T, Guerin CL, Chauvat A, Dransart E, Alanio C, Albert S, Barry B, Sandoval F, Quintin-Colonna F, Bruneval P, Fridman WH, Lemoine FM, Oudard S, Johannes L, Olive D, Brasnu D, Tartour E (2013) PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res 73(1):128–138Google Scholar
  16. 16.
    Mishra A, Bharti AC, Varghese P, Saluja D, Das BC (2006) Differential expression and activation of NF-kappaB family proteins during oral carcinogenesis: role of high risk human papillomavirus infection. Int J Cancer 119(12):2840–2850Google Scholar
  17. 17.
    Youngblood B, Noto A, Porichis F, Akondy RS, Ndhlovu ZM, Austin JW, Bordi R, Procopio FA, Miura T, Allen TM, Sidney J, Sette A, Walker BD, Ahmed R, Boss JM, Sekaly RP, Kaufmann DE (2013) Cutting edge: prolonged exposure to HIV reinforces a poised epigenetic program for PD-1 expression in virus-specific CD8 T cells. J Immunol 191(2):540–544Google Scholar
  18. 18.
    McPherson RC, Konkel JE, Prendergast CT, Thomson JP, Ottaviano R, Leech MD, Kay O, Zandee SE, Sweenie CH, Wraith DC, Meehan RR, Drake AJ, Anderton SM (2014) Epigenetic modification of the PD-1 (Pdcd1) promoter in effector CD4(+) T cells tolerized by peptide immunotherapy. Elife 3.  https://doi.org/10.7554/eLife.03416
  19. 19.
    Zhang M, Xiao XQ, Jiang YF, Liang YS, Peng MY, Xu Y, Gong GZ (2011) DNA demethylation in PD-1 gene promoter induced by 5-azacytidine activates PD-1 expression on Molt-4 cells. Cell Immunol 271(2):450–454Google Scholar
  20. 20.
    Youngblood B, Oestreich KJ, Ha SJ, Duraiswamy J, Akondy RS, West EE, Wei Z, Lu P, Austin JW, Riley JL, Boss JM, Ahmed R (2011) Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 35(3):400–412Google Scholar
  21. 21.
    Orskov AD, Treppendahl MB, Skovbo A, Holm MS, Friis LS, Hokland M, Gronbaek K (2015) Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: a rationale for combined targeting of PD-1 and DNA methylation. Oncotarget 6(11):9612–9626Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alok Mishra
    • 1
  • Mukesh Verma
    • 2
  1. 1.The Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins UniversityBaltimoreUSA
  2. 2.National Cancer Institute, National Institutes of HealthRockvilleUSA

Personalised recommendations