Advertisement

Epigenetic Changes of the Immune System with Role in Tumor Development

  • Irina Daniela Florea
  • Christina Karaoulani
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1856)

Abstract

Tumor development is closely related to chronic inflammation and to evasion of immune defense mechanisms by neoplastic cells. The mediators of the inflammatory process as well as proteins involved in immune response or immune response evasion can be subject to various epigenetic changes such as methylation, acetylation, or phosphorylation. Some of these, such as cytokine suppressors, are undergoing repression through epigenetic changes, and others such as cytokines or chemokines are undergoing activation through epigenetic changes, both modifications having as a result tumor progression. The activating changes can affect the receptor molecules involved in immune response and these promote inflammation and subsequently tumor development while the inactivating changes seem to be related to the tumor regression process. The proteins involved in antigen presentation, and, therefore in immune response escape, such as classical HLA proteins and related APM (antigen presentation machinery) with their epigenetic changes contribute to the tumor development process, either to tumor progression or regression, depending on the immune effector cells that are in play.

Key words

Epigenetics Immune escape Methylation Acetylation HLA TLR Cytokines Chemokines Cancer Inflammation SOCS NK cells Nonclassical HLA APM CIITA 5-aza-2-deoxycytidine HDAC inhibitors 

References

  1. 1.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation and cancer. Cell 140(6):883–899PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Yasmin R, Siraj S, Hassan A, Khan AR, Abbasi R, Ahmad N (2015) Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies. Mediat Inflamm 2015:201703CrossRefGoogle Scholar
  3. 3.
    Dong J, Jimi E, Zeiss C, Hayden MS, Ghosh S (2010) Constitutively active NF-kappaB triggers systemic TNFalpha-dependent inflammation and localized TNFalpha-independent inflammatory disease. Genes Dev 24(16):1709–1717PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bharti AC, Shishodia S, Reuben JM, Weber D, Alexanian R, Raj-Vadhan S, Estrov Z, Talpaz M, Aggarwal BB (2004) Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 103(8):3175–3184PubMedCrossRefGoogle Scholar
  5. 5.
    Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ Jr, Sledge GW Jr (1997) Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17(7):3629–3639PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Esteller M (2006) Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. Br J Cancer 94(2):179–183PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lettini AA, Guidoboni M, Fonsatti E, Anzalone L, Cortini E, Maio M (2007) Epigenetic remodelling of DNA in cancer. Histol Histopathol 22(12):1413–1424PubMedGoogle Scholar
  8. 8.
    Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T (2001) Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 20(10):2536–2544PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks F, Lo Coco F, Kouzarides T, Nervi C, Minucci S, Pelicci PG (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295(5557):1079–1082PubMedCrossRefGoogle Scholar
  10. 10.
    Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054PubMedCrossRefGoogle Scholar
  11. 11.
    Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1):21–24PubMedCrossRefGoogle Scholar
  12. 12.
    Sontheimer EJ, Carthew RW (2005) Silence from within: endogenous siRNAs and miRNAs. Cell 122(1):9–12PubMedCrossRefGoogle Scholar
  13. 13.
    Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE, Harris CC, Herman JG (2001) SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet 28(1):29–35PubMedGoogle Scholar
  14. 14.
    He B, You L, Uematsu K, Zang K, Xu Z, Lee AY, Costello JF, McCormick F, Jablons DM (2003) SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci U S A 100(24):14133–14138PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    He B, You L, Xu Z, Mazieres J, Lee AY, Jablons DM (2004) Activity of the suppressor of cytokine signaling-3 promoter in human non-small-cell lung cancer. Clin Lung Cancer 5(6):366–370PubMedCrossRefGoogle Scholar
  16. 16.
    Weber A, Hengge UR, Bardenheuer W, Tischoff I, Sommerer F, Markwarth A, Dietz A, Wittekind C, Tannapfel A (2005) SOCS-3 is frequently methylated in head and neck squamous cell carcinoma and its precursor lesions and causes growth inhibition. Oncogene 24(44):6699–6708PubMedCrossRefGoogle Scholar
  17. 17.
    Niwa Y, Kanda H, Shikauchi Y, Saiura A, Matsubara K, Kitagawa T, Yamamoto J, Kubo T, Yoshikawa H (2005) Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene 24(42):6406–6417PubMedCrossRefGoogle Scholar
  18. 18.
    Tang Y, Kitisin K, Jogunoori W, Li C, Deng CX, Mueller SC, Ressom HW, Rashid A, He AR, Mendelson JS, Jessup JM, Shetty K, Zasloff M, Mishra B, Reddy EP, Johnson L, Mishra L (2008) Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc Natl Acad Sci U S A 105(7):2445–2450PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chu PY, Yeh CM, Hsu NC, Chang YS, Chang JG, Yeh KT (2010) Epigenetic alteration of the SOCS1 gene in hepatocellular carcinoma. Swiss Med Wkly 140:w13065PubMedGoogle Scholar
  20. 20.
    Saelee P, Chuensumran U, Wongkham S, Chariyalertsak S, Tiwawech D, Petmitr S (2012) Hypermethylation of suppressor of cytokine signaling 1 in hepatocellular carcinoma patients. Asian Pac J Cancer Prev 13(7):3489–3493PubMedCrossRefGoogle Scholar
  21. 21.
    Miyoshi H1, Fujie H, Moriya K, Shintani Y, Tsutsumi T, Makuuchi M, Kimura S, Koike K (2004) Methylation status of suppressor of cytokine signaling-1 gene in hepatocellular carcinoma. J Gastroenterol 39(6):563–569PubMedCrossRefGoogle Scholar
  22. 22.
    Formeister EJ, Tsuchiya M, Fujii H, Shpyleva S, Pogribny IP, Rusyn I (2010) Comparative analysis of promoter methylation and gene expression endpoints between tumorous and non-tumorous tissues from HCV-positive patients with hepatocellular carcinoma. Mutat Res 692(1-2):26–33PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhao RC, Zhou J, He JY, Wei YG, Qin Y, Li B (2016) Aberrant promoter methylation of SOCS-1 gene may contribute to the pathogenesis of hepatocellular carcinoma: a meta-analysis. J BUON 21(1):142–151PubMedGoogle Scholar
  24. 24.
    Bagnyukova TV, Tryndyak VP, Muskhelishvili L, Ross SA, Beland FA, Pogribny IP (2008) Epigenetic downregulation of the suppressor of cytokine signaling 1 (Socs1) gene is associated with the STAT3 activation and development of hepatocellular carcinoma induced by methyl-deficiency in rats. Cell Cycle 7(20):3202–3210PubMedCrossRefGoogle Scholar
  25. 25.
    Souma Y, Nishida T, Serada S, Iwahori K, Takahashi T, Fujimoto M, Ripley B, Nakajima K, Miyazaki Y, Mori M, Doki Y, Sawa Y, Naka T (2012) Antiproliferative effect of SOCS-1 through the suppression of STAT3 and p38 MAPK activation in gastric cancer cells. Int J Cancer 131(6):1287–1296PubMedCrossRefGoogle Scholar
  26. 26.
    To KF, Chan MW, Leung WK, Ng EK, Yu J, Bai AH, Lo AW, Chu SH, Tong JH, Lo KW, Sung JJ, Chan FK (2004) Constitutional activation of IL-6-mediated JAK/STAT pathway through hypermethylation of SOCS-1 in human gastric cancer cell line. Br J Cancer 91(7):1335–1341PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Lai RH, Hsiao YW, Wang MJ, Lin HY, Wu CW, Chi CW Li AF, Jou YS, Chen JY (2010) SOCS6, down-regulated in gastric cancer, inhibits cell proliferation and colony formation. Cancer Lett 288(1):75–85PubMedCrossRefGoogle Scholar
  28. 28.
    Komazaki T, Nagai H, Emi M, Terada Y, Yabe A, Jin E Kawanami O, Konishi N, Moriyama Y, Naka T, Tet K (2004) Hypermethylation-associated inactivation of the SOCS-1 gene, a JAK/STAT inhibitor, in human pancreatic cancers. Jpn J Clin Oncol 34(4):191–194PubMedCrossRefGoogle Scholar
  29. 29.
    Fukushima N, Sato N, Sahin F, Su GH, Hruban RH, Goggins M (2003) Aberrant methylation of suppressor of cytokine signalling-1 (SOCS-1) gene in pancreatic ductal neoplasms. Br J Cancer 89(2):338–343PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Xu SB, Liu XH, Li BH, Zhang Y, Yuan J, Yuan Q, Li PD, Yang XZ, Li F, Zhang WJ (2009) DNA methylation regulates constitutive expression of Stat6 regulatory genes SOCS-1 and SHP-1 in colon cancer cells. J Cancer Res Clin Oncol 135(12):1791–1798PubMedCrossRefGoogle Scholar
  31. 31.
    Liu XH, Xu SB, Yuan J, Li BH, Zhang Y, Yuan Q, Li PD, Li F, Zhang WJ (2009) Defective interleukin-4/Stat6 activity correlates with increased constitutive expression of negative regulators SOCS-3, SOCS-7, and CISH in colon cancer cells. J Interf Cytokine Res 29(12):809–816CrossRefGoogle Scholar
  32. 32.
    Hibi K, Kodera Y, Ito K, Akiyama S, Nakao A (2005) Aberrant methylation of HLTF, SOCS-1, and CDH13 genes is shown in colorectal cancers without lymph node metastasis. Dis Colon Rectum 48(6):1282–1286PubMedCrossRefGoogle Scholar
  33. 33.
    Li Y, Deuring J, Peppelenbosch MP, Kuipers EJ, de Haar C, van der Woude CJ (2012) IL-6-induced DNMT1 activity mediates SOCS3 promoter hypermethylation in ulcerative colitis-related colorectal cancer. Carcinogenesis 33(10):1889–1896PubMedCrossRefGoogle Scholar
  34. 34.
    Isomoto H (2009) Epigenetic alterations in cholangiocarcinoma-sustained IL-6/STAT3 signaling in cholangiocarcinoma due to SOCS3 epigenetic silencing. Digestion 79(Suppl 1):2–8PubMedCrossRefGoogle Scholar
  35. 35.
    Isomoto H, Mott JL, Kobayashi S, Werneburg NW, Bronk SF, Haan S, Gores GJ (2007) Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing. Gastroenterology 132(1):384–396PubMedCrossRefGoogle Scholar
  36. 36.
    Fujitake S, Hibi K, Okochi O, Kodera Y, Ito K, Akiyama S, Nakao A (2004) Aberrant methylation of SOCS-1 was observed in younger colorectal cancer patients. J Gastroenterol 39(2):120–124PubMedCrossRefGoogle Scholar
  37. 37.
    Hatirnaz O, Ure U, Ar C, Akyerli C, Soysal T, Ferhanoğlu B, Ozçelik T, Ozbek U (2007) The SOCS-1 gene methylation in chronic myeloid leukemia patients. Am J Hematol 82(8):729–730PubMedCrossRefGoogle Scholar
  38. 38.
    Liu TC, Lin SF, Chang JG, Yang MY, Hung SY, Chang CS (2003) Epigenetic alteration of the SOCS1 gene in chronic myeloid leukaemia. Br J Haematol 123(4):654–661PubMedCrossRefGoogle Scholar
  39. 39.
    Chen CY, Tsay W, Tang JL, Shen HL, Lin SW, Huang SY, Yao M, Chen YC, Shen MC, Wang CH, Tien HF (2003) SOCS1 methylation in patients with newly diagnosed acute myeloid leukemia. Genes Chromosomes Cancer 37(3):300–305PubMedCrossRefGoogle Scholar
  40. 40.
    Molavi O, Wang P, Zak Z, Gelebart P, Belch A, Lai R (2013) Gene methylation and silencing of SOCS3 in mantle cell lymphoma. Br J Haematol 161(3):348–356PubMedCrossRefGoogle Scholar
  41. 41.
    Wu SJ, Yao M, Chou WC, Tang JL, Chen CY, Ko BS, Tsay W, Chen YC, Shen MC, Wang CH, Yeh YC, Tien HF (2006) Clinical implications of SOCS1 methylation in myelodysplastic syndrome. Br J Haematol 135(3):317–323PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang X, You Q, Zhang X, Chen X (2015) SOCS3 methylation predicts a poor prognosis in HBV infection-related hepatocellular carcinoma. Int J Mol Sci 16(9):22662–22675PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Pierconti F, Martini M, Pinto F, Cenci T, Capodimonti S, Calarco A, Bassi PF, Larocca LM (2011) Epigenetic silencing of SOCS3 identifies a subset of prostate cancer with an aggressive behavior. Prostate 71(3):318–325PubMedCrossRefGoogle Scholar
  44. 44.
    Martini M, Pallini R, Luongo G, Cenci T, Lucantoni C, Larocca LM (2008) Prognostic relevance of SOCS3 hypermethylation in patients with glioblastoma multiforme. Int J Cancer 123(12):2955–2960PubMedCrossRefGoogle Scholar
  45. 45.
    Singh RK, Sudhakar A, Lokeshwar BL (2010) Role of chemokines and chemokine receptors in prostate Cancer development and progression. J Cancer Sci Ther 2(4):89–94PubMedPubMedCentralGoogle Scholar
  46. 46.
    Mori T, Kim J, Yamano T, Takeuchi H, Huang S, Umetani N, Koyanagi K, Hoon DS (2005) Epigenetic up-regulation of C-C chemokine receptor 7 and C-X-C chemokine receptor 4 expression in melanoma cells. Cancer Res 65(5):1800–1807PubMedCrossRefGoogle Scholar
  47. 47.
    Ramos EA, Grochoski M, Braun-Prado K, Seniski GG, Cavalli IJ, Ribeiro EM, Camargo AA, Costa FF, Klassen G (2011) Epigenetic changes of CXCR4 and its ligand CXCL12 as prognostic factors for sporadic breast cancer. PLoS One 6(12):e29461PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Sato N, Matsubayashi H, Fukushima N, Goggins M (2005) The chemokine receptor CXCR4 is regulated by DNA methylation in pancreatic cancer. Cancer Biol Ther 4(1):70–76PubMedCrossRefGoogle Scholar
  49. 49.
    Luczak MW, Roszak A, Pawlik P, Kędzia H, Kędzia W, Malkowska-Walczak B, Lianeri M, Jagodziński PP (2012) Transcriptional analysis of CXCR4, DNMT3A, DNMT3B and DNMT1 gene expression in primary advanced uterine cervical carcinoma. Int J Oncol 40(3):860–866PubMedGoogle Scholar
  50. 50.
    Wehbe H, Henson R, Meng F, Mize-Berge J, Patel T (2006) Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression. Cancer Res 66(21):10517–10524PubMedCrossRefGoogle Scholar
  51. 51.
    Baird AM, Gray SG, O'Byrne KJ (2011) IL-20 is epigenetically regulated in NSCLC and down regulates the expression of VEGF. Eur J Cancer 47(12):1908–1918PubMedCrossRefGoogle Scholar
  52. 52.
    Zhong D, Cen H (2017) Aberrant promoter methylation profiles and association with survival in patients with hepatocellular carcinoma. Onco Targets Ther 10:2501–2509PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    D'Anello L, Sansone P, Storci G, Mitrugno V, D'Uva G, Chieco P, Bonafé M (2010) Epigenetic control of the basal-like gene expression profile via Interleukin-6 in breast cancer cells. Mol Cancer 9:300PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Song EY, Shurin MR, Tourkova IL, Gutkin DW, Shurin GV (2010) Epigenetic mechanisms of promigratory chemokine CXCL14 regulation in human prostate cancer cells. Cancer Res 70(11):4394–4401PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Borden EC (2007) Augmentation of effects of interferon-stimulated genes by reversal of epigenetic silencing: potential application to melanoma. Cytokine Growth Factor Rev 18(5-6):491–501PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Janson PC, Marits P, Thörn M, Ohlsson R, Winqvist O (2008) CpG methylation of the IFNG gene as a mechanism to induce immunosuppression [correction of immunosupression] in tumor-infiltrating lymphocytes. J Immunol 181(4):2878–2886PubMedCrossRefGoogle Scholar
  57. 57.
    Zhi Y, Chen J, Zhang S, Chang X, Ma J, Dai D (2012) Down-regulation of CXCL12 by DNA hypermethylation and its involvement in gastric cancer metastatic progression. Dig Dis Sci 57(3):650–659PubMedCrossRefGoogle Scholar
  58. 58.
    Zhou W, Jiang Z, Liu N, Xu F, Wen P, Liu Y, Zhong W, Song X, Chang X, Zhang X, Wei G, Yu J (2009) Down-regulation of CXCL12 mRNA expression by promoter hypermethylation and its association with metastatic progression in human breast carcinomas. J Cancer Res Clin Oncol 135(1):91–102PubMedCrossRefGoogle Scholar
  59. 59.
    Ramos EA, Camargo AA, Braun K, Slowik R, Cavalli IJ, Ribeiro EM, Pedrosa Fde O, de Souza EM, Costa FF, Klassen G (2010) Simultaneous CXCL12 and ESR1 CpG island hypermethylation correlates with poor prognosis in sporadic breast cancer. BMC Cancer 10:23PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wendt MK, Cooper AN, Dwinell MB (2008) Epigenetic silencing of CXCL12 increases the metastatic potential of mammary carcinoma cells. Oncogene 27(10):1461–1471PubMedCrossRefGoogle Scholar
  61. 61.
    Suzuki M, Mohamed S, Nakajima T, Kubo R, Tian L, Fujiwara T, Suzuki H, Nagato K, Chiyo M, Motohashi S, Yasufuku K, Iyoda A, Yoshida S, Sekine Y, Shibuya K, Hiroshima K, Nakatani Y, Yoshino I, Fujisawa T (2008) Aberrant methylation of CXCL12 in non-small cell lung cancer is associated with an unfavorable prognosis. Int J Oncol 33(1):113–119PubMedGoogle Scholar
  62. 62.
    González-Reyes S, Marín L, González L, González LO, del Casar JM, Lamelas ML et al (2010) Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association with metastasis. BMC Cancer 10:665PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Jing YY, Han ZP, Sun K, Zhang SS, Hou J, Liu Y, Li R, Gao L, Zhao X, Zhao QD, Wu MC, Wei LX (2012) Toll-like receptor 4 signaling promotes epithelial-mesenchymal transition in human hepatocellular carcinoma induced by lipopolysaccharide. BMC Med 10:98PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ochi A, Graffeo CS, Zambirinis CP, Rehman A, Hackman M, Fallon N, Barilla RM, Henning JR, Jamal M, Rao R, Greco S, Deutsch M, Medina-Zea MV, Bin Saeed U, Ego-Osuala MO, Hajdu C, Miller G (2012) Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans. J Clin Invest 122(11):4118–4129PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Huynh AS, Chung WJ, Cho HI, Moberg VE, Celis E, Morse DL, Vagner J (2012) Novel toll-like receptor 2 ligands for targeted pancreatic cancer imaging and immunotherapy. J Med Chem 55(22):9751–9762PubMedCrossRefGoogle Scholar
  66. 66.
    Ochi A, Nguyen AH, Bedrosian AS, Mushlin HM, Zarbakhsh S, Barilla R, Zambirinis CP, Fallon NC, Rehman A, Pylayeva-Gupta Y, Badar S, Hajdu CH, Frey AB, Bar-Sagi D, Miller G (2012) MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med 209(9):1671–1687PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Cherfils-Vicini J, Platonova S, Gillard M, Laurans L, Validire P, Caliandro R, Magdeleinat P, Mami-Chouaib F, Dieu-Nosjean MC, Fridman WH, Damotte D, Sautès-Fridman C, Cremer I (2010) Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. J Clin Invest 120(4):1285–1297PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zhang YB, He FL, Fang M, Hua TF, Hu BD, Zhang ZH, Cao Q, Liu RY (2009) Increased expression of toll-like receptors 4 and 9 in human lung cancer. Mol Biol Rep 36(6):1475–1481PubMedCrossRefGoogle Scholar
  69. 69.
    Wang L, Zhao Y, Qian J, Sun L, Lu Y, Li H, Li Y, Yang J, Cai Z, Yi Q (2013) Toll-like receptor-4 signaling in mantle cell lymphoma: effects on tumor growth and immune evasion. Cancer 119(4):782–791PubMedCrossRefGoogle Scholar
  70. 70.
    Xu Y, Zhao Y, Huang H, Chen G, Wu X, Wang Y, Chang W, Zhu Z, Feng Y, Wu D (2010) Expression and function of toll-like receptors in multiple myeloma patients: toll-like receptor ligands promote multiple myeloma cell growth and survival via activation of nuclear factor-kappaB. Br J Haematol 150(5):543–553PubMedCrossRefGoogle Scholar
  71. 71.
    Bell JK (2011) The TOLL of inflammation in multiple myeloma. Cancer Biol Ther 11(1):68–70PubMedCrossRefGoogle Scholar
  72. 72.
    Bao H, Lu P, Li Y, Wang L, Li H, He D, Yang Y, Zhao Y, Yang L, Wang M, Yi Q, Cai Z (2011) Triggering of toll-like receptor-4 in human multiple myeloma cells promotes proliferation and alters cell responses to immune and chemotherapy drug attack. Cancer Biol Ther 11(1):58–67PubMedCrossRefGoogle Scholar
  73. 73.
    Banerjee S, Halder K, Bose A, Bhattacharya P, Gupta G, Karmahapatra S, Das S, Chaudhuri S, Bhattacharyya Majumdar S, Majumdar S (2011) TLR signaling-mediated differential histone modification at IL-10 and IL-12 promoter region leads to functional impairments in tumor-associated macrophages. Carcinogenesis 32(12):1789–1797PubMedCrossRefGoogle Scholar
  74. 74.
    Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC (2004) Advances in biology of multiple myeloma: clinical applications. Blood 104(3):607–618PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    van Horssen R, Ten Hagen TL, Eggermont AM (2006) TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 11(4):397–408PubMedCrossRefGoogle Scholar
  76. 76.
    Sullivan KE, Reddy AB, Dietzmann K, Suriano AR, Kocieda VP, Stewart M, Bhatia M (2007) Epigenetic regulation of tumor necrosis factor alpha. Mol Cell Biol 27(14):5147–5160PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kim TW, Lee SJ, Oh BM, Lee H, Uhm TG, Min JK, Park YJ, Yoon SR, Kim BY, Kim JW, Choe YK, Lee HG (2016) Epigenetic modification of TLR4 promotes activation of NF-κB by regulating methyl-CpG-binding domain protein 2 and Sp1 in gastric cancer. Oncotarget 7(4):4195–4209PubMedGoogle Scholar
  78. 78.
    Zauner L, Melroe GT, Sigrist JA, Rechsteiner MP, Dorner M, Arnold M, Berger C, Bernasconi M, Schaefer BW, Speck RF, Nadal D (2010) TLR9 triggering in Burkitt's lymphoma cell lines suppresses the EBV BZLF1 transcription via histone modification. Oncogene 29(32):4588–4598PubMedCrossRefGoogle Scholar
  79. 79.
    Chang CC, Campoli M, Ferrone S (2005) Classical and nonclassical HLA class I antigen and NK cell-activating ligand changes in malignant cells: current challenges and future directions. Adv Cancer Res 93:189–234PubMedCrossRefGoogle Scholar
  80. 80.
    Magner WJ, Kazim AL, Stewart C, Romano MA, Catalano G, Grande C, Keiser N, Santaniello F, Tomasi TB (2000) Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol 165(12):7017–7024PubMedCrossRefGoogle Scholar
  81. 81.
    Tomasi TB, Magner WJ, Khan AN (2006) Epigenetic regulation of immune escape genes in cancer. Cancer Immunol Immunother 55(10):1159–1184PubMedCrossRefGoogle Scholar
  82. 82.
    Setiadi AF, David MD, Seipp RP, Hartikainen JA, Gopaul R, Jefferies WA (2007) Epigenetic control of the immune escape mechanisms in malignant carcinomas. Mol Cell Biol 27(22):7886–7894PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Khan AN, Magner WJ, Tomasi TB (2004) An epigenetically altered tumor cell vaccine. Cancer Immunol Immunother 53(8):748–754PubMedCrossRefGoogle Scholar
  84. 84.
    Chou SD, Khan AN, Magner WJ, Tomasi TB (2005) Histone acetylation regulates the cell type specific CIITA promoters, MHC class II expression and antigen presentation in tumor cells. Int Immunol 17(11):1483–1494PubMedCrossRefGoogle Scholar
  85. 85.
    Singh NP, Yolcu ES, Taylor DD, Gercel-Taylor C, Metzinger DS, Dreisbach SK, Shirwan H (2003) A novel approach to cancer immunotherapy: tumor cells decorated with CD80 generate effective antitumor immunity. Cancer Res 63(14):4067–4073PubMedGoogle Scholar
  86. 86.
    Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT (2002) Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev 188:22–32PubMedCrossRefGoogle Scholar
  87. 87.
    Maio M, Coral S, Fratta E, Altomonte M, Sigalotti L (2003) Epigenetic targets for immune intervention in human malignancies. Oncogene 22(42):6484–6488PubMedCrossRefGoogle Scholar
  88. 88.
    Germenis AE, Karanikas V (2007) Immunoepigenetics: the unseen side of cancer immunoediting. Immunol Cell Biol 85(1):55–59PubMedCrossRefGoogle Scholar
  89. 89.
    Campoli M, Ferrone S (2008) HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 27(45):5869–5885PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Serrano A, Tanzarella S, Lionello I, Mendez R, Traversari C, Ruiz-Cabello F, Garrido F (2001) Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2′-deoxycytidine treatment. Int J Cancer 94(2):243–251PubMedCrossRefGoogle Scholar
  91. 91.
    Khan AN, Gregorie CJ, Tomasi TB (2008) Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells. Cancer Immunol Immunother 57(5):647–654PubMedCrossRefGoogle Scholar
  92. 92.
    Fonsatti E, Sigalotti L, Coral S, Colizzi F, Altomonte M, Maio M (2003) Methylation-regulated expression of HLA class I antigens in melanoma. Int J Cancer 105(3):430–431PubMedCrossRefGoogle Scholar
  93. 93.
    Radosevich M, Jager M, Ono SJ (2007) Inhibition of MHC class II gene expression in uveal melanoma cells is due to methylation of the CIITA gene or an upstream activator. Exp Mol Pathol 82(1):68–76PubMedCrossRefGoogle Scholar
  94. 94.
    Nie Y, Yang G, Song Y, Zhao X, So C, Liao J, Wang LD, Yang CS (2001) DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis 22(10):1615–1623PubMedCrossRefGoogle Scholar
  95. 95.
    Qifeng S, Bo C, Xingtao J, Chuanliang P, Xiaogang Z (2011) Methylation of the promoter of human leukocyte antigen class I in human esophageal squamous cell carcinoma and its histopathological characteristics. J Thorac Cardiovasc Surg 141(3):808–814PubMedCrossRefGoogle Scholar
  96. 96.
    Ye Q, Shen Y, Wang X, Yang J, Miao F, Shen C, Zhang J (2010) Hypermethylation of HLA class I gene is associated with HLA class I down-regulation in human gastric cancer. Tissue Antigens 75(1):30–39PubMedCrossRefGoogle Scholar
  97. 97.
    Mora-García Mde L, Duenas-González A, Hernández-Montes J, De la Cruz-Hernández E, Pérez-Cárdenas E, Weiss-Steider B, Santiago-Osorio E, Ortíz-Navarrete VF, Rosales VH, Cantú D, Lizano-Soberón M, Rojo-Aguilar MP, Monroy-García A (2006) Up-regulation of HLA class-I antigen expression and antigen-specific CTL response in cervical cancer cells by the demethylating agent hydralazine and the histone deacetylase inhibitor valproic acid. J Transl Med 4:55PubMedCrossRefGoogle Scholar
  98. 98.
    Ogretmen B, McCauley MD, Safa AR (1998) Molecular mechanisms of loss of beta 2-microglobulin expression in drug-resistant breast cancer sublines and its involvement in drug resistance. Biochemistry 37(33):11679–11691PubMedCrossRefGoogle Scholar
  99. 99.
    Ye SR, Yang H, Li K, Dong DD, Lin XM, Yie SM (2007) Human leukocyte antigen G expression: as a significant prognostic indicator for patients with colorectal cancer. Mod Pathol 20(3):375–383PubMedCrossRefGoogle Scholar
  100. 100.
    Yie SM, Yang H, Ye SR, Li K, Dong DD, Lin XM (2007) Expression of human leukocyte antigen G (HLA-G) correlates with poor prognosis in gastric carcinoma. Ann Surg Oncol 14(10):2721–2729PubMedCrossRefGoogle Scholar
  101. 101.
    Yie SM, Yang H, Ye SR, Li K, Dong DD, Lin XM (2007) Expression of human leucocyte antigen G (HLA-G) is associated with prognosis in non-small cell lung cancer. Lung Cancer 58(2):267–274PubMedCrossRefGoogle Scholar
  102. 102.
    Chang CC, Ferrone S (2003) HLA-G in melanoma: can the current controversies be solved? Semin Cancer Biol 13(5):361–369PubMedCrossRefGoogle Scholar
  103. 103.
    Lin A, Yan WH, Xu HH, Gan MF, Cai JF, Zhu M, Zhou MY (2007) HLA-G expression in human ovarian carcinoma counteracts NK cell function. Ann Oncol 18(11):1804–1809PubMedCrossRefGoogle Scholar
  104. 104.
    Li XJ, Zhang X, Lin A, Ruan YY, Yan WH (2012) Human leukocyte antigen-G (HLA-G) expression in cervical cancer lesions is associated with disease progression. Hum Immunol 73(9):946–949PubMedCrossRefGoogle Scholar
  105. 105.
    Xu DP, Shi WW, Zhang TT, Lv HY, Li JB, Lin A, Yan WH (2016) Elevation of HLA-G-expressing DC-10 cells in patients with gastric cancer. Hum Immunol 77(9):800–804PubMedCrossRefGoogle Scholar
  106. 106.
    Sebti Y, Le Maux A, Gros F, De Guibert S, Pangault C, Rouas-Freiss N, Bernard M, Amiot L (2007) Expression of functional soluble human leucocyte antigen-G molecules in lymphoproliferative disorders. Br J Haematol 138(2):202–212PubMedCrossRefGoogle Scholar
  107. 107.
    Dunker K, Schlaf G, Bukur J, Altermann WW, Handke D, Seliger B (2008) Expression and regulation of non-classical HLA-G in renal cell carcinoma. Tissue Antigens 72(2):137–148PubMedCrossRefGoogle Scholar
  108. 108.
    Yan WH, Lin AF, Chang CC, Ferrone S (2005) Induction of HLA-G expression in a melanoma cell line OCM-1A following the treatment with 5-aza-2′-deoxycytidine. Cell Res 15(7):523–531PubMedCrossRefGoogle Scholar
  109. 109.
    Menendez L, Walker LD, Matyunina LV, Totten KA, Benigno BB, McDonald JF (2008) Epigenetic changes within the promoter region of the HLA-G gene in ovarian tumors. Mol Cancer 7:43PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Seliger B (2008) Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immunother 57(11):1719–1726PubMedCrossRefGoogle Scholar
  111. 111.
    Reith W, LeibundGut-Landmann S, Waldburger JM (2005) Regulation of MHC class II gene expression by the class II transactivator. Nat Rev Immunol 5(10):793–806PubMedCrossRefGoogle Scholar
  112. 112.
    Wright KL, Ting JP (2006) Epigenetic regulation of MHC-II and CIITA genes. Trends Immunol 27(9):405–412PubMedCrossRefGoogle Scholar
  113. 113.
    van den Elsen PJ, van der Stoep N, Viëtor HE, Wilson L, van Zutphen M, Gobin SJ (2000) Lack of CIITA expression is central to the absence of antigen presentation functions of trophoblast cells and is caused by methylation of the IFN-gamma inducible promoter (PIV) of CIITA. Hum Immunol 61(9):850–856PubMedCrossRefGoogle Scholar
  114. 114.
    Campoli M, Chang CC, Oldford SA, Edgecombe AD, Drover S, Ferrone S (2004) HLA antigen changes in malignant tumors of mammary epithelial origin: molecular mechanisms and clinical implications. Breast Dis 20:105–125PubMedCrossRefGoogle Scholar
  115. 115.
    van der Stoep N, Biesta P, Quinten E, van den Elsen PJ (2002) Lack of IFN-gamma-mediated induction of the class II transactivator (CIITA) through promoter methylation is predominantly found in developmental tumor cell lines. Int J Cancer 97(4):501–507PubMedCrossRefGoogle Scholar
  116. 116.
    Satoh A, Toyota M, Ikeda H, Morimoto Y, Akino K, Mita H, Suzuki H (2004) Epigenetic inactivation of class II transactivator (CIITA) is associated with the absence of interferon-gamma-induced HLA-DR expression in colorectal and gastric cancer cells. Oncogene 23(55):8876–8886PubMedCrossRefGoogle Scholar
  117. 117.
    Kanaseki T et al (2003) Histone deacetylation, but not hypermethylation, modifies class II transactivator and MHC class II gene expression in squamous cell carcinomas. J Immunol 170(10):4980–4985PubMedCrossRefGoogle Scholar
  118. 118.
    Morimoto Y, Toyota M, Satoh A, Murai M, Mita H, Suzuki H (2004) Inactivation of class II transactivator by DNA methylation and histone deacetylation associated with absence of HLA-DR induction by interferon-gamma in haematopoietic tumour cells. Br J Cancer 90(4):844–852PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Takamura Y, Ikeda H, Kanaseki T, Toyota M, Tokino T, Imai K, Houkin K (2004) Regulation of MHC class II expression in glioma cells by class II transactivator (CIITA). Glia 45(4):392–405PubMedCrossRefGoogle Scholar
  120. 120.
    Ghosh N, Gyory I, Wright G, Wood J, Wright KL (2001) Positive regulatory domain I binding factor 1 silences class II transactivator expression in multiple myeloma cells. J Biol Chem 276(18):15264–15268PubMedCrossRefGoogle Scholar
  121. 121.
    Hasim A, Abudula M, Aimiduo R, Ma JQ, Jiao Z, Akula G, Wang T (2012) Post-transcriptional and epigenetic regulation of antigen processing machinery (APM) components and HLA-I in cervical cancers from Uighur women. PLoS One 7(9):e44952PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Chaux P, Moutet M, Faivre J, Martin F, Martin M (1996) Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not B7-1 and B7-2 costimulatory molecules of the T-cell activation. Lab Investig 74(5):975–983PubMedGoogle Scholar
  123. 123.
    Scarpa M, Castagliuolo I, Erroi F, Basato S, Brun P, Angriman I (2016) CD80 down-regulation is associated to aberrant DNA methylation in non-inflammatory colon carcinogenesis. BMC Cancer 16:388PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Adachi M, Watanabe-Fukunaga R, Nagata S (1993) Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc Natl Acad Sci U S A 90(5):1756–1760PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308PubMedCrossRefGoogle Scholar
  126. 126.
    Maecker HL, Borhani N, Karbasi A, Koochaki A, Kazemi B (2002) Epigenetic changes in tumor Fas levels determine immune escape and response to therapy. Cancer Cell 2(2):139–148PubMedCrossRefGoogle Scholar
  127. 127.
    Manoochehri M, Borhani N, Karbasi A, Koochaki A, Kazemi B (2016) Promoter hypermethylation and downregulation of the FAS gene may be involved in colorectal carcinogenesis. Oncol Lett 12(1):285–290PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Petak I, Danam RP, Tillman DM, Vernes R, Howell SR, Berczi L, Kopper L, Brent TP, Houghton JA (2003) Hypermethylation of the gene promoter and enhancer region can regulate Fas expression and sensitivity in colon carcinoma. Cell Death Differ 10(2):211–217PubMedCrossRefGoogle Scholar
  129. 129.
    Santourlidis S, Warskulat U, Florl AR, Maas S, Pulte T, Fischer J (2001) Hypermethylation of the tumor necrosis factor receptor superfamily 6 (APT1, Fas, CD95/Apo-1) gene promoter at rel/nuclear factor kappaB sites in prostatic carcinoma. Mol Carcinog 32(1):36–43PubMedCrossRefGoogle Scholar
  130. 130.
    Cacan E (2016) Histone Deacetylase-1-mediated suppression of FAS in Chemoresistant ovarian Cancer cells. Anticancer Res 36(6):2819–2826PubMedGoogle Scholar
  131. 131.
    Watson CJ, O'Kane H, Maxwell P, Sharaf O, Petak I, Hyland PL (2012) Identification of a methylation hotspot in the death receptor Fas/CD95 in bladder cancer. Int J Oncol 40(3):645–654PubMedGoogle Scholar
  132. 132.
    Cacan E, Greer SF, Garnett-Benson C (2015) Radiation-induced modulation of immunogenic genes in tumor cells is regulated by both histone deacetylases and DNA methyltransferases. Int J Oncol 7(6):2264–2275CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Irina Daniela Florea
    • 1
  • Christina Karaoulani
    • 2
  1. 1.Department of ImmunologyUniversity of Medicine and PharmacyIasiRomania
  2. 2.University of Medicine and PharmacyIasiRomania

Personalised recommendations