Advertisement

Direct Immunodetection of Antigens Within the Precast Polyacrylamide Gel

  • Surbhi Desai
  • Boguslawa R. Dworecki
  • Marie C. Nlend
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1853)

Abstract

Western blotting is one of the few basic techniques widely used in the study of proteins in life science research. Despite its prevalence, the procedure has remained practically unchanged for more than 20 years. Although the method is viewed as being error-prone and as requiring excessive hands-on time, it is still widely accepted because it provides sensitive and direct information about the protein characteristics. The process is attractive to researchers because it reduces the investment in instrumentation and set up. Here we describe a procedure that eliminates the transfer step of western blotting and allows for antigen detection directly within the polyacrylamide gel, thus minimizing the investment necessary for setting up western blotting.

Key words

In-gel immunodetection Western blotting alternative Immunoblot Chemiluminescence Fluorescence Near infrared NIR 

References

  1. 1.
    Towbin H, Staehlin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to NC sheets: procedure and applications. Proc Natl Acad Sci U S A 76:4350–4354CrossRefGoogle Scholar
  2. 2.
    Renart J, Reiser J, Stark GR (1979) Transfer of proteins from gels to diaobenzyloxymethyl paper and detection with anti-sera: a method for studying antibody specificity and antigen structure. Proc Natl Acad Sci U S A 76:3116–3120CrossRefGoogle Scholar
  3. 3.
    Burridge K (1976) Changes in cellular glycoproteins after transformation: identification of specific glycoproteins and antigens in sodium dodecyl sulfate gels. Proc Natl Acad Sci U S A 73:4457–4461CrossRefGoogle Scholar
  4. 4.
    Rosta JA, Kelly PT, Colman CW (1977) The identification of membrane glycol components in polyacrylamide gels. A rapid method using 125I-labeled lectins. Anal Biochem 80:366–372CrossRefGoogle Scholar
  5. 5.
    Olden K, Yamada KM (1977) Direct detection of antigens in sodium dodeca sulfate-polyacrylamide gels. Anal Biochem 78:483–490CrossRefGoogle Scholar
  6. 6.
    Adair WS, Jurivich D, Goodenough US (1978) Localization of cellular antigens in sodium dodeca sulfate polyacrylamide gels. J Cell Biol 78:281–285CrossRefGoogle Scholar
  7. 7.
    Gersten DM (1996) In: Rickwood D (ed) Gel electrophoresis: proteins. Wiley, New YorkGoogle Scholar
  8. 8.
    Lin W, Kasamatsu H (1983) On electrophoresis of polypeptides from gels to nitrocellulose membranes. Anal Biochem 128:302–311CrossRefGoogle Scholar
  9. 9.
    Den Hollander N, Befus D (1989) Loss of antigens from immunoblotting membranes. J Immunol Methods 122:129–135CrossRefGoogle Scholar
  10. 10.
    Shainoff J, Valenzuela R, Graor R, Urbanic D, DiBello P (1990) Electrophoretic characterization of cross-linked fibrinogen derivatives in blood and vascular tissue by zonal immobilization on glyoxyl agarose. Adv Exp Med Biol 281(1990):73–81CrossRefGoogle Scholar
  11. 11.
    Shainoff JR (1993) Electrophoresis and direct immunodetection on glyoxyl agarose and polyacrylamide composites. Adv Electrophoresis 6:64–177Google Scholar
  12. 12.
    Desai S, Dworecki B, Cichon E (2001) Direct immunodetection of antigens within the precast polyacrylamide gel. Anal Biochem 297:94–98CrossRefGoogle Scholar
  13. 13.
    Desai S, Dworecki B, Undesser LP, Wolf B, Krohn R (2005) Alternative to western blotting. In: Recent Res Dev Anal Biochem, vol 4, pp 17–33Google Scholar
  14. 14.
    Roberts KF, Ensrud KM, Hamilton HW (2002) A comparative analysis of expression and processing of the rat epdidylmal fluid and sperm-bound forms of protein D and E. Biol Reprod 67:525–533CrossRefGoogle Scholar
  15. 15.
    Desai S, Dworecki B, Cichon E (2002) Detection of antigens within the polyacrylamide gel. In: Bioluminescence and chemiluminescence: progress and current applications, vol 413–416. World Scientific Publishing Co Pte Ltd, Singapore, pp 19.7.1–19.7.10Google Scholar
  16. 16.
    Mathews ST, Plaisance EP, Kim T (2009) Imaging systems for westerns: chemiluminescence vs. infrared detection. Methods Mol Biol 536:499–513.  https://doi.org/10.1007/978-1-59745-542-8_51CrossRefPubMedGoogle Scholar
  17. 17.
    Theisen MJ, Chiu ML (2004) In-gel immunochemical detection of proteins that transfer poorly to membranes. LI-COR Biosciences, NebraskaGoogle Scholar
  18. 18.
    Hagan AK, Zuchner T (2011) Lanthanide-based time-resolved luminescence immunoassays. Anal Bioanal Chem 400:2847–2864 HomepageCrossRefGoogle Scholar
  19. 19.
    Town SC, Putman CT, Turchinsky NJ, Dixon WT, Foxcroft GR (2004) Number of conceptuses in utero affects porcine fetal muscle development. Reproduction 128:443–454CrossRefGoogle Scholar
  20. 20.
    De Ioannes P, Moltedo B, Oliva H, Pacheco R, Faunes F, De Ioannes AE, Becker MI (2004) Hemocyanin of the molluscan Concholepas concholepas exhibits an unusual heterodecameric array of subunits. J Biol Chem 279:26134–26142CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Surbhi Desai
    • 1
  • Boguslawa R. Dworecki
    • 1
  • Marie C. Nlend
    • 1
  1. 1.Thermo Fisher ScientificRockfordUSA

Personalised recommendations