Advertisement

TEMED Enhanced Photoluminescent Imaging of Human Serum Proteins by Quantum Dots After PAGE

  • Na Na
  • Jin Ouyang
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1853)

Abstract

Polyacrylamide gel electrophoresis (PAGE) has become one of the most powerful and widely used separation techniques for complex biological samples, whose traditional detection methods include organic dye or silver staining. For simple, convenient, and ultrasensitive detection of proteins after PAGE, a novel enhanced photoluminescent (PL) imaging method was developed. Thioglycolic acid (TGA)-capped CdTe quantum dots (QDs) and the enhancer reagent tetramethylethylenediamine (TEMED) were introduced, achieving the direct detection of various proteins in native 1-DE, 2-DE and SDS-PAGE. Here we describe the general protocol of TEMED enhanced PL imaging by QDs, including materials, practical procedures, and some notes.

Key words

CdTe Quantum dots TEMED Photoluminescent imaging Polyacrylamide gel electrophoresis Human serum proteins 

Notes

Acknowledgment

J. Ouyang thanks the financial support by the National Nature Science Foundation of China (21475011 and 21675014) and National Grant of Basic Research Program of China (2011CB915504). N. Na thanks the financial support provided by the National Nature Science Foundation of China (214220503 and 21675015) and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Anderson NL, Anderson NG (2002) The human plasma proteome—history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867CrossRefGoogle Scholar
  2. 2.
    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRefPubMedGoogle Scholar
  3. 3.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625CrossRefGoogle Scholar
  5. 5.
    Zhang J, Sajid M, Na N, Huang L, He D, Ouyang J (2012) The application of Au nanoclusters in the fluorescence imaging of human serum proteins after native PAGE: enhancing detection by low-temperature plasma treatment. Biosens Bioelectron 35:313–318CrossRefPubMedGoogle Scholar
  6. 6.
    Wang Y, Zhang J, Huang L, He D, Ma L, Ouyang J, Jiang F (2012) Novel application of Ag Nanoclusters in fluorescent imaging of human serum proteins after native polyacrylamide gel electrophoresis (PAGE). Chem Eur J 18:1432–1437CrossRefPubMedGoogle Scholar
  7. 7.
    Liu P, Na N, Huang L, He D, Huang C, Ouyang J (2012) The application of amine-terminated silicon quantum dots on the imaging of human serum proteins after polyacrylamide gel electrophoresis (PAGE). Chem Eur J 18:1438–1443CrossRefPubMedGoogle Scholar
  8. 8.
    Na N, Liu T, Xu S, Zhang Y, He D, Huang L, Jin O (2013) Application of fluorescent carbon nanodots in fluorescence imaging of human serum proteins. J Mater Chem B 1:787–792CrossRefGoogle Scholar
  9. 9.
    Na N, Zhang J, You Y, Su S, Ouyang J (2014) Colloidal Au nanoparticle-based “turn on” fluorescence imaging for in-gel protein detection. J Mater Chem B 2:2654–2657CrossRefGoogle Scholar
  10. 10.
    Xu S, Liu P, Lu X, Zhang J, Huang L, Hua W, He D, Ouyang J (2014) A highly sensitive “turn-on” fluorescent sensor for the detection of human serum proteins based on the size exclusion of the polyacrylamide gel. Electrophoresis 35:546–553CrossRefPubMedGoogle Scholar
  11. 11.
    Duncan TV, Polanco MAM, Kim Y, Park SJ (2009) Improving the quantum yields of semiconductor quantum dots through photoenhancement assisted by reducing agents. J Phys Chem C 113:7561–7566CrossRefGoogle Scholar
  12. 12.
    Rene-Boisneuf L, Scaiano JC (2008) Sensitivity versus stability: making quantum dots more luminescent by sulfur photocuring without compromising sensor response. Chem Mater 20:6638–6642CrossRefGoogle Scholar
  13. 13.
    Park C, Yoon TH (2010) L-Cysteine-induced photoluminescence enhancement of CdSe/ZnSe quantum dots in aqueous solution. Colloids Surf B 75:472–477CrossRefGoogle Scholar
  14. 14.
    DeGroot MW, Taylor NJ, Corrigan JF (2003) Zinc chalcogenolate complexes as capping agents in the synthesis of ternary II-II '-VI nanoclusters: structure and photophysical properties of [(N,N '-tmeda)(5)Zn5Cd11Se13(SePh)(6)(thf)(2)]. J Am Chem Soc 125:864–865CrossRefPubMedGoogle Scholar
  15. 15.
    Cusack J, Drew MGB, Spalding TR (2004) Syntheses and spectroscopy of diamine complexes of Zn(II) and Cd(II) ethylxanthates and the molecular structures of [M(S2COEt)(2)TMEDA]: formation of US nanoparticles from [Cd(S2COEt)(2)] and [Cd(S2COEt)(2)TMEDA]. Polyhedron 23:2315–2321CrossRefGoogle Scholar
  16. 16.
    Kedarnath G, Kumbhare LB, Jain VK, Phadnis PP, Nethaji M (2006) Group 12 metal monoselenocarboxylates: synthesis, characterization, structure and their transformation to metal selenide (MSe; M = Zn, Cd, Hg) nanoparticles. Dalton Trans:2714–2718Google Scholar
  17. 17.
    Jun YW, Koo JE, Cheon J (2000) One-step synthesis of size tuned zinc selenide quantum dots via a temperature controlled molecular precursor approach. Chem Commun:1243–1244Google Scholar
  18. 18.
    Na N, Liu L, Taes YEC, Zhang CL, Huang BR, Liu YL, Ma L, Ouyang J (2010) Direct CdTe quantum-dot-based fluorescence imaging of human serum proteins. Small 6:1589–1592CrossRefPubMedGoogle Scholar
  19. 19.
    Wang Q, Kuo Y, Wang Y, Shin G, Ruengruglikit C, Huang Q (2006) Luminescent properties of water-soluble denatured bovine serum albumin-coated CdTe quantum dots. J Phys Chem B 110:16860–16866CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang H, Zhou Z, Yang B, Gao M (2003) The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J Phys Chem B 107:8–13CrossRefGoogle Scholar
  21. 21.
    Huang CG, Na N, Huang LY, He DC, Ouyang J (2010) TEMED enhanced photoluminescent imaging detection of proteins in human serum using quantum dots after PAGE. J Proteome Res 9:5574–5581CrossRefPubMedGoogle Scholar
  22. 22.
    Ge SG, Zhang CC, Zhu YN, Yu JH, Zhang SS (2010) BSA activated CdTe quantum dot nanosensor for antimony ion detection. Analyst 135:111–115CrossRefPubMedGoogle Scholar
  23. 23.
    Idowu M, Lamprecht E, Nyokong T (2008) Interaction of water-soluble thiol capped CdTe quantum dots and bovine serum albumin. J Photochem Photobiol A 198:7–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ChemistryBeijing Normal UniversityBeijingP. R. China

Personalised recommendations