Rapid and Selective Screening Method for Isolation and Identification of Carotenoid-Producing Bacteria

  • Dalal Asker
  • Tarek S. Awad
  • Teruhiko Beppu
  • Kenji Ueda
Part of the Methods in Molecular Biology book series (MIMB, volume 1852)


Carotenoids are naturally occurring yellow to red pigments with many biological activities including antioxidant, anticancer, anti-inflammatory, membrane stabilizers, and precursors for vitamin A. These biological activities are linked with many health benefits (e.g., anticarcinogenic activity, prevention of chronic diseases, etc.), which grew the interest of several industrial sectors especially in food, feed, nutraceuticals, cosmetics, and pharmaceutical industries. The production of natural carotenoids from microbial sources such as bacteria can help meet the growing global market of carotenoids estimated at $1.5 billion in 2014 and is expected to reach 1.8 billion in 2019. This chapter demonstrates, step-by-step, the development of a rapid and selective screening method for isolation and identification of carotenoid-producing microorganisms and their carotenoid analysis. This method involves three main procedures: UV treatment, sequencing analysis of 16S rRNA genes, and carotenoids analysis using rapid and effective HPLC-diode array-MS methods.

Key words

Carotenoids Irradiation Misasa Bacteria Radiotolerant 16S rRNA genes sequencing analysis Phylogeny Diversity Photodiode array detection HPLC-DAD HPLC-MS 


  1. 1.
    Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids handbook. Birkhäuser, BaselCrossRefGoogle Scholar
  2. 2.
    Krinsky NI (2001) Carotenoids as antioxidants. Nutrition 17:815–817PubMedCrossRefGoogle Scholar
  3. 3.
    Nelis HJ, De Leenheer AP (1989) Profiling and quantitation of bacterial carotenoids by liquid chromatography and photodiode array detection. Appl Environ Microbiol 55:3065–3071PubMedPubMedCentralGoogle Scholar
  4. 4.
    Noviendri D, Hasrini RF, Octavianti F (2011) Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. J Med Plant Res 5:7119–7131Google Scholar
  5. 5.
    Amaya E, Nickell D (2015) Using feed to enhance the color quality of fish and crustaceans. In: Feed and Feeding Practices in Aquaculture. Woodhead Publishing, Oxford, pp 269–298CrossRefGoogle Scholar
  6. 6.
    Francis FJ (2000) Carotenoids as food colorants. Cereal Food World 45:198–203Google Scholar
  7. 7.
    Klaui H, Bauernfeind JC (eds) (1981) Carotenoids as food colors. Academic Press, New YorkGoogle Scholar
  8. 8.
    Paiva SA, Russell RM (1999) Beta-carotene and other carotenoids as antioxidants. J Am Coll Nutr 18:426–433PubMedCrossRefGoogle Scholar
  9. 9.
    Krinsky NI (1989) Antioxidant functions of carotenoids. Free Radic Biol Med 7:617–635PubMedCrossRefGoogle Scholar
  10. 10.
    Schalch W, Weber P (1994) Vitamins and carotenoids-a promising approach to reducing the risk of coronary heart disease, cancer and eye diseases. Adv Exp Med Biol 366:335–350PubMedCrossRefGoogle Scholar
  11. 11.
    Agarwal S, Rao AV (2000) Carotenoids and chronic diseases. Drug Metabol Drug Interact 17:189–210PubMedCrossRefGoogle Scholar
  12. 12.
    Peng YM, Peng YS, Childers JM et al (1998) Concentrations of carotenoids, tocopherols, and retinol in paired plasma and cervical tissue of patients with cervical cancer, precancer, and noncancerous diseases. Cancer Epidemiol Biomarkers Prev 7:347–350PubMedGoogle Scholar
  13. 13.
    Jacques PF, Chylack LT Jr (1991) Epidemiologic evidence of a role for the antioxidant vitamins and carotenoids in cataract prevention. Am J Clin Nutr 53:352S–355SPubMedCrossRefGoogle Scholar
  14. 14.
    Seddon JM, Ajani UA, Sperduto RD et al (1994) Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye disease case-control study group. JAMA 272:1413–1420PubMedCrossRefGoogle Scholar
  15. 15.
    Wang X, Willen R, Wadstrom T (2000) Astaxanthin-rich algal meal and vitamin C inhibit Helicobacter pylori infection in BALB/cA mice. Antimicrob Agents Chemother 44:2452–2457PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Jyonouchi H, Sun S, Gross M (1995) Effect of carotenoids on in vitro immunoglobulin production by human peripheral blood mononuclear cells: astaxanthin, a carotenoid without vitamin A activity, enhances in vitro immunoglobulin production in response to a T-dependent stimulant and antigen. Nutr Cancer 23:171–183PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Yuan J-P, Peng J, Yin K et al (2011) Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Molecular nutrition & food research 55:150–165CrossRefGoogle Scholar
  19. 19.
    Preobrazhenskii VN, Vasilenko VV, Matveev AA (1997) Beta-carotenoids and their potential use in diseases of the digestive tract. Klin Med (Mosk) 75:43–45Google Scholar
  20. 20.
    März U (2008) FOD025C-The Global Market for Carotenoids In: BCC ResearchGoogle Scholar
  21. 21.
    März U (2015) FOD025E-The Global Market for Carotenoids In: BCC ResearchGoogle Scholar
  22. 22.
    Ernst H (2002) Recent advances in industrial carotenoid synthesis. Pure Appl Chem 74:1369–1382CrossRefGoogle Scholar
  23. 23.
    Franco-Zavaleta ME, Jimenez-Pichardo R, Tomasini-Campocosio A et al (2010) Astaxanthin extraction from shrimp wastes and its stability in 2 model systems. J Food Sci 75:C394–C399PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ausich RL (1997) Commercial opportunities for carotenoid production by biotechnology. Pure Appl Chem 69:2169–2174CrossRefGoogle Scholar
  25. 25.
    Bhosale P (2004) Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol 63:351–361PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Stankovic I (2004) Zeaxanthin chemical and technical assessment (CTA) In: FAO (ed) 63rdJECFA.Google Scholar
  27. 27.
    Reyes LH, Gomez JM, Kao KC (2014) Improving carotenoids production in yeast via adaptive laboratory evolution. Metab Eng 21:26–33PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Asker D (2018) High throughput screening and profiling of high-value carotenoids from a wide diversity of bacteria in surface seawater. Food Chem 261:103–111PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Mata-Gómez LC, Montañez JC, Méndez-Zavala A et al (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Factories 13:12–23CrossRefGoogle Scholar
  30. 30.
    Mendes-Pinto MM, Raposo MFJ, Bowen J et al (2001) Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. J Appl Phycol 13:19–24CrossRefGoogle Scholar
  31. 31.
    Jahnke LS (1999) Massive carotenoid accumulation in Dunaliella bardawil induced by ultraviolet-A radiation. J Photochem Photobiol 48:68–74CrossRefGoogle Scholar
  32. 32.
    Ben-Amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene rich globules from Dunaliella bardawil (chlorophyceae). J Phycol 18:529–537CrossRefGoogle Scholar
  33. 33.
    Iturriaga EA, Papp T, Breum J et al (2005) Strain and culture conditions improvement for β-carotene production with Mucor. Humana Press Inc., Totowa, NJGoogle Scholar
  34. 34.
    Murillo FJ, Calderon IL, Lopez-Diaz I et al (1978) Carotene-superproducing strains of Phycomyces. Appl Environ Microbiol 36:639–642PubMedPubMedCentralGoogle Scholar
  35. 35.
    Mehta BJ, Salgado LM, Bejarano ER et al (1997) New Mutants of Phycomyces blakesleeanus for (beta)-Carotene Production. Appl Environ Microbiol 63:3657–3661PubMedPubMedCentralGoogle Scholar
  36. 36.
    Pegklidou K, Mantzouridou F, Tsimidou MZ (2008) Lycopene production using Blakeslea trispora in the presence of 2-methyl imidazole: yield, selectivity, and safety aspects. J Agric Food Chem 56:4482–4490PubMedCrossRefGoogle Scholar
  37. 37.
    Jones JD, Hohn TM, Leatherst D (2004) Genetically modified strains of Fusarium sporotrichioides for production of lycopene and b-Carotene. In: Society of Industrial Microbiology Annual Meeting, San Diego, p 91Google Scholar
  38. 38.
    Del Rio E, Acien FG, MC G-M et al (2008) Efficiency assessment of the one-step production of astaxanthin by the microalga Haematococcus pluvialis. Biotechnol Bioeng 100:397–402PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Jacobson GK, Jolly SO, Sedmak JJ et al. (1999) Astaxanthin over-producing strains of Phaffia rhodozyma, methods for their cultivation, and their use in animal feeds. United StatesGoogle Scholar
  40. 40.
    Liu YS, Wu JY (2006) Hydrogen peroxide-induced astaxanthin biosynthesis and catalase activity in Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 73:663–668PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Calo P, Miguel TD, Sieiro C et al (1995) Ketocarotenoids in halobacteria: 3-hydroxy-echinenone and trans-astaxanthin. J Appl Bacteriol 79:282CrossRefGoogle Scholar
  42. 42.
    Yokoyama A, Izumida H, Miki W (1994) Production of astaxanthin and 4-ketozeaxanthin by the marine bacterium, Agrobacterium aurantiacum. Biosci Biotech Biochem 58:1842–1844CrossRefGoogle Scholar
  43. 43.
    Tsubokura A, Yoneda H, Mizuta H (1999) Paracoccus carotinifaciens sp. nov., a new aerobic gram-negative astaxanthin-producing bacterium. Int J Syst Bacteriol 49 Pt 1:277–282CrossRefGoogle Scholar
  44. 44.
    Yokoyama A, Miki W, Izumida H et al (1996) New trihydroxy-keto-carotenoids isolated from an astaxanthin-producing marine bacterium. Biosci Biotech Biochem 60:200–203CrossRefGoogle Scholar
  45. 45.
    Osanjo GO, Muthike EW, Tsuma L et al. (2009) A salt lake extremophile, Paracoccus bogoriensis sp. nov., efficiently produces xanthophyll carotenoids. Afr J Microbiol Res Vol.(8) pp. August, 3:426-433Google Scholar
  46. 46.
    Asker D, Isaka K (2006) Production of astaxanthin by microorganisms. Japan Patent 340676AGoogle Scholar
  47. 47.
    Shepherd D, Dasek J, Suzanne M et al. (1976) Production of zeaxanthin. US patent 3, 951, 743Google Scholar
  48. 48.
    Bhosale P, Larson AJ, Bernstein PS (2004) Factorial analysis of tricarboxylic acid cycle intermediates for optimization of zeaxanthin production from Flavobacterium multivorum. J Appl Microbiol 96:623–629PubMedCrossRefGoogle Scholar
  49. 49.
    Lagarde D, Beuf L, Vermaas W (2000) Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 66:64–72PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hundle BS, O’brien DA, Beyer P et al (1993) In vitro expression and activity of lycopene cyclase and beta-carotene hydroxylase from Erwinia herbicola. FEBS Lett 315:329–334Google Scholar
  51. 51.
    Berry A, Janssens D, Humbelin M et al (2003) Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. Int J Syst Evol Microbiol 53:231–238PubMedCrossRefGoogle Scholar
  52. 52.
    Mcdermott JC, Britton G, Goodwin TW (1973) Carotenoid biosynthesis in a Flavobacterium sp.: stereochemistry of hydrogen elimination in the desaturation of phytoene to lycopene, rubixanthin and zeaxanthin. Biochem J 134:1115–1117PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Asker D, Beppu T, Ueda K (2008) Nubsella zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Sphingobacteriaceae isolated from freshwater. Int J Syst Evol Microbiol 58:601–606PubMedCrossRefGoogle Scholar
  54. 54.
    Asker D, Beppu T, Ueda K (2007) Zeaxanthinibacter enoshimensis gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae, isolated from seawater off Enoshima Island, Japan. Int J Syst Evol Microbiol 57:837–843PubMedCrossRefGoogle Scholar
  55. 55.
    Asker D, Beppu T, Ueda K (2007) Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae. Syst Appl Microbiol 30:291–296PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Cooney JJ, Marks HW, Smith AM (1966) Isolation and Identification of Canthaxanthin from Micrococcus roseus. J Bacteriol 92:342–345PubMedPubMedCentralGoogle Scholar
  57. 57.
    Veiga-Crespo P, Blasco L, Rosa-Dos-Santos F et al (2005) Influence of culture conditions of Gordonia jacobaea MV-26 on canthaxanthin production. Int Microbiol 8:55–58PubMedGoogle Scholar
  58. 58.
    De Miguel T, Sieiro C, Poza M et al (2001) Analysis of canthaxanthin and related pigments from Gordonia jacobaea mutants. J Agric Food Chem 49:1200–1202PubMedCrossRefGoogle Scholar
  59. 59.
    Asker D, Ohta Y (1999) Production of canthaxanthin by extremely halophilic bacteria. J Biosci Bioeng 88:617–621PubMedCrossRefGoogle Scholar
  60. 60.
    Asker D, Ohta Y (2002) Production of canthaxanthin by Haloferax alexandrinus under non-aseptic conditions and a simple, rapid method for its extraction. Appl Microbiol Biotechnol 58:743–750PubMedCrossRefGoogle Scholar
  61. 61.
    Lorquin J, Molouba F, Dreyfus BL (1997) Identification of the carotenoid pigment canthaxanthin from photosynthetic bradyrhizobium strains. Appl Environ Microbiol 63:1151–1154PubMedPubMedCentralGoogle Scholar
  62. 62.
    Guyomarch F, Binet A, Dufosse L (2000) Production of carotenoids by Brevibacterium lines: variation among strains, kinetic as pects and HPLC profiles. J Ind Microbiol Biotech 24:64–70CrossRefGoogle Scholar
  63. 63.
    Del Campo JA, Rodriguez H, Moreno J et al (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854PubMedCrossRefGoogle Scholar
  64. 64.
    Shi XM, Liu HJ, Zhang XW et al (1999) Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem 34:341–347CrossRefGoogle Scholar
  65. 65.
    Del Campo JA, Rodriguez H, Moreno J et al (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 85:289–295PubMedCrossRefGoogle Scholar
  66. 66.
    Asker D, Beppu T, Ueda K (2007) Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl Microbiol Biotechnol 77:383–392PubMedCrossRefGoogle Scholar
  67. 67.
    Asker D (2017) Isolation and characterization of a novel, highly selective astaxanthin-producing marine bacterium. J Agric Food Chem 65:9101–9109PubMedCrossRefGoogle Scholar
  68. 68.
    Oren A, Rodríguez-Valera F (2001) The contribution of halophilic bacteria to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 36:123–130PubMedGoogle Scholar
  69. 69.
    Jehlička J, Edwards H, Oren A (2013) Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: a Raman spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc 106:99–103PubMedCrossRefGoogle Scholar
  70. 70.
    Oren A, Rodriguez-Valera F (2001) The contribution of halophilic bacteria to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 36:123–130PubMedGoogle Scholar
  71. 71.
    Hanada S, Kawase Y, Hiraishi A et al (1997) Porphyrobacter tepidarius sp. nov., a moderately thermophilic aerobic photosynthetic bacterium isolated from a hot spring. Int J Syst Bacteriol 47:408–413PubMedCrossRefGoogle Scholar
  72. 72.
    Kilian O, Steunou AS, Fazeli F et al (2007) Responses of a thermophilic Synechococcus isolate from the microbial mat of Octopus Spring to light. Appl Environ Microbiol 73:4268–4278PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Allewalt JP, Bateson MM, Revsbech NP et al (2006) Effect of temperature and light on growth of and photosynthesis by Synechococcus isolates typical of those predominating in the octopus spring microbial mat community of Yellowstone National Park. Appl Environ Microbiol 72:544–550PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lutnaes BF, Strand A, Petursdottir SK et al (2004) Carotenoids of thermophilic bacteria - Rhodothermus marinus from submarine Icelandic hot springs. Biochem Syst Ecol 32:455–468CrossRefGoogle Scholar
  75. 75.
    Strand A, Shivaji S, Liaaenjensen S (1997) Bacterial carotenoids .55. C-50-carotenoids. 25. Revised structures of carotenoids associated with membranes in psychrotrophic Micrococcus roseus. Biochem Syst Ecol 25:547–552CrossRefGoogle Scholar
  76. 76.
    Lazrak T, Wolff G, Albrecht AM et al (1988) Bacterioruberins reinforce reconstituted Halobacterium lipid-membranes. Biochim Biophys Acta 939:160–162CrossRefGoogle Scholar
  77. 77.
    Yamano Y, Sakai Y, Hara M et al (2002) Carotenoids and related polyenes. Part 9. Total synthesis of thermozeaxanthin and thermocryptoxanthin and the stabilizing effect of thermozeaxanthin on liposomes. J Chem Soc Perk T 1:2006–2013CrossRefGoogle Scholar
  78. 78.
    Stafsnes MH, Josefsen KD, Kildahl-Andersen G et al (2010) Isolation and characterization of marine pigmented bacteria from Norwegian coastal waters and screening for carotenoids with UVA-blue light absorbing properties. J Microbiol 48:16–23PubMedCrossRefGoogle Scholar
  79. 79.
    Hirabayashi H, Ishii T, Takaichi S et al (2004) The role of carotenoids in the photoadaptation of the brown-colored sulfur bacterium Chlorobium phaeobacteroides. Photochem Photobiol 79:280–285PubMedCrossRefGoogle Scholar
  80. 80.
    Moline M, Libkind D, Dieguez Mdel C et al (2009) Photoprotective role of carotenoids in yeasts: Response to UV-B of pigmented and naturally-occurring albino strains. J Photochem Photobiol B 95:156–161PubMedCrossRefGoogle Scholar
  81. 81.
    Libkind D, Moline M, Sampaio JP et al (2009) Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 69:353–362PubMedCrossRefGoogle Scholar
  82. 82.
    Martinez-Laborda A, Balsalobre JM, Fontes M et al (1990) Accumulation of carotenoids in structural and regulatory mutants of the bacterium Myxococcus xanthus. Mol Gen Genet 223:205–210PubMedCrossRefGoogle Scholar
  83. 83.
    Halliwell B (1996) Free radicals, proteins and DNA: oxidative damage versus redox regulation. Biochem Soc Trans 24:1023–1027PubMedCrossRefGoogle Scholar
  84. 84.
    Carbonneau MA, Melin AM, Perromat A et al (1989) The action of free radicals on Deinococcus radiodurans carotenoids. Arch Biochem Biophys 275:244–251PubMedCrossRefGoogle Scholar
  85. 85.
    Tian B, Xu Z, Sun Z et al (2007) Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim Biophys Acta 1770:902–911PubMedCrossRefGoogle Scholar
  86. 86.
    Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203–224PubMedCrossRefGoogle Scholar
  87. 87.
    Anton J, Oren A, Benlloch S et al (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491PubMedCrossRefGoogle Scholar
  88. 88.
    Takaichi S, Oh-Oka H, Maoka T et al (2003) Novel carotenoid glucoside esters from alkaliphilic heliobacteria. Arch Microbiol 179:95–100PubMedCrossRefGoogle Scholar
  89. 89.
    Yokoyama A, Sandmann G, Hoshino T et al (1995) Thermozeaxanthins, new carotenoid-glycoside-esters from thermophilic eubacterium Thermus thermophilus. Tetrahedron Lett 46:4901–4904CrossRefGoogle Scholar
  90. 90.
    Kametani K, Matsumura T (1983) Determination of 238U, 234U, 226Ra and 228Ra in spring waters of sanin district. Radioisotopes 32:18–21PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Dufossé L (2009) Pigments, Microbial. In: Moselio S (ed) Encyclopedia of Microbiology. Academic Press, Oxford, pp 457–471CrossRefGoogle Scholar
  92. 92.
    Tangeras A, Marøy T, Wahlstrøm S et al (1989) Release of astaxanthin from the red yeast Phaffia rhodozyma by high pressure homogenization. In: Program 1: Int. Mar. Biotechnol. Conf. (IMB’89), TokyoGoogle Scholar
  93. 93.
    Gentles A, Haard NF (1991) Pigmentation of rainbow trout with enzyme-treated and spray-dried Phaffia rhodozyma. Prog Fish Cult 53:1–6CrossRefGoogle Scholar
  94. 94.
    Johnson EA, Conklin DE, Lewis MJ (1977) The yeast Phaffia rhodozyma as a dietary pigment source for salmonids and crustaceans. J Fish Res Board Can 34:2417–2421CrossRefGoogle Scholar
  95. 95.
    Johnson EA, Villa TG, Lewis MJ (1980) Phaffia rhodozyma as an astaxanthin source in salmonid diets. Aquaculture 20:123–134CrossRefGoogle Scholar
  96. 96.
    Storebakken T, Sørensen M, Bjerkeng B et al (2004) Stability of astaxanthin from red yeast, Xanthophyllomyces dendrorhous, during feed processing: effects of enzymatic cell wall disruption and extrusion temperature. Aquaculture 231:489–500CrossRefGoogle Scholar
  97. 97.
    Colla E, Pereira A, Hernalsteens S et al (2010) Optimization of trehalose production by Rhodotorula dairenensis following a sequential strategy of experimental design. Food Bioprocess Technol 3:265–275CrossRefGoogle Scholar
  98. 98.
    Fontana JD, Czeczuga B, Bonfim TMB et al (1996) Bioproduction of carotenoids: The comparative use of raw sugarcane juice and depolymerized bagasse by Phaffia rhodozyma. Bioresour Technol 58:121–125CrossRefGoogle Scholar
  99. 99.
    Aguilera-Carbo A, Hernández J, Augur C et al (2009) Ellagic acid production from biodegradation of creosote bush ellagitannins by Aspergillus niger in solid state culture. Food Bioprocess Technol 2:208–212CrossRefGoogle Scholar
  100. 100.
    Johnson EA, An GH (1991) Astaxanthin from Microbial Sources. Crit Rev Biotechnol 11:297–326CrossRefGoogle Scholar
  101. 101.
    An GH, Choi ES (2003) Preparation of the red yeast, Xanthophyllomyces dendrorhous, as feed additive with increased availability of astaxanthin. Biotechnol Lett 25:767–771PubMedCrossRefGoogle Scholar
  102. 102.
    Valduga E, Valerio A, Tatsch PO et al (2009) Assessment of cell disruption and carotenoids extraction from Sporidiobolus salmonicolor (CBS 2636). Food Bioprocess Technol 2:234–238CrossRefGoogle Scholar
  103. 103.
    Sedmak JJ, Weerasinghe DK, Jolly SO (1990) Extraction and quantification of astaxanthin from Phaffia rhodaozyma. Biotechnol Tech 4:107–112CrossRefGoogle Scholar
  104. 104.
    Ladislav F, Vera P, Karel S et al (2005) Reliability of carotenoid analyses: a review. Curr Anal Chem 1:93–102CrossRefGoogle Scholar
  105. 105.
    Khachik F (2009) Analysis of carotenoids in nutritional studies. Birkhäuser Verlag Basel, Basel/Boston/BerlinCrossRefGoogle Scholar
  106. 106.
    Pupin AM, Dennis MJ, Toledo MCF (1999) HPLC analysis of carotenoids in orange juice. Food Chem 64:269–275CrossRefGoogle Scholar
  107. 107.
    Scott KJ, Finglas PM, Seale R et al (1996) Interlaboratory studies of HPLC procedures for the analysis of carotenoids in foods. Food Chem 57:85–90CrossRefGoogle Scholar
  108. 108.
    Hart DJ, Scott KJ (1995) Development and evaluation of an Hplc method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chem 54:101–111CrossRefGoogle Scholar
  109. 109.
    Stackebrandt E, Goebel BM (1994) A place for DNA-DNA reassociation and 16s ribosomal-Rna sequence-analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  110. 110.
    Schleifer KH, Ludwig W (1989) Phylogenetic relationships of bacteria. Elsevier Science Publishers B. V, AmsterdamGoogle Scholar
  111. 111.
    Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedPubMedCentralGoogle Scholar
  112. 112.
    Rossello-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67PubMedCrossRefGoogle Scholar
  113. 113.
    Egan S, Thomas T, Kjelleberg S (2008) Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Curr Opin Microbiol 11:219–225PubMedCrossRefGoogle Scholar
  114. 114.
    Asker D, Awad TS, Beppu T et al (2012) Isolation, characterization, and diversity of novel radiotolerant carotenoid-producing bacteria. Methods Mol Biol 892:21–60PubMedCrossRefGoogle Scholar
  115. 115.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Meyers SP, Bligh D (1981) Characterization of astaxanthin pigments from heat-processed crawfish waste. J Agric Food Chem 29:505–508PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dalal Asker
    • 1
    • 2
  • Tarek S. Awad
    • 2
  • Teruhiko Beppu
    • 3
  • Kenji Ueda
    • 3
  1. 1.Food Science and Technology Department, Faculty of AgricultureAlexandria UniversityAlexandriaEgypt
  2. 2.Department of Materials Science and EngineeringUniversity of TorontoTorontoCanada
  3. 3.Life Science Research Center, College of Bioresource SciencesNihon UniversityFujisawaJapan

Personalised recommendations