Advertisement

Screening, Isolation, and Identification of Zeaxanthin-Producing Bacteria

  • Dalal Asker
  • Tarek S. Awad
  • Teruhiko Beppu
  • Kenji Ueda
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1852)

Abstract

Zeaxanthin is a yellow xanthophyll, dihydroxy-carotenoid, that is naturally found in some of the green, orange, and yellow vegetables and fruits and has a powerful antioxidant activity. Epidemiological evidences suggest that increasing the consumption of zeaxanthin in the diet is associated with a lower risk of age-related macular degeneration (ARMD) and cataracts, two of the leading causes of blindness in the world. Zeaxanthin is a promising nutraceutical/colorant with many applications in feed, food, and pharmaceutical industries. Currently, the commercial production of zeaxanthin is dependent on synthetic routes with limitation in production from biological sources. However, the biotechnological production of natural zeaxanthin is favored due to its safety, potential large-scale production and consumers’ preference for natural additives. In this chapter, we describe a rapid screening method based on 16S rRNA gene sequencing and effective HPLC with diode array detector/MS methods for the isolation and identification of zeaxanthin-producing bacteria and their carotenoid analysis.

Key words

Zeaxanthin Nutraceuticals Antioxidants Colorants Ketocarotenoids Bacteria Fresh water 16S rDNA phylogeny HPLC-DAD-MS HPLC-MS 

References

  1. 1.
    Sommerburg O et al (1998) Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes. Br J Ophthalmol 82(8):907–910CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nelis HJ, Deleenheer AP (1991) Microbial sources of carotenoid-pigments used in foods and feeds. J Appl Bacteriol 70(3):181–191CrossRefGoogle Scholar
  3. 3.
    Handelman GJ et al (1999) Antioxidant capacity of oat (Avena sativa L.) extracts. 1. Inhibition of low-density lipoprotein oxidation and oxygen radical absorbance capacity. J Agric Food Chem 47(12):4888–4893CrossRefPubMedGoogle Scholar
  4. 4.
    Humphries JM, Khachik F (2003) Distribution of lutein, zeaxanthin, and related geometrical isomers in fruit, vegetables, wheat, and pasta products. J Agric Food Chem 51(5):1322–1327CrossRefPubMedGoogle Scholar
  5. 5.
    Hadden WL et al (1999) Carotenoid composition of marigold (Tagetes erecta) flower extract used as nutritional supplement. J Agric Food Chem 47(10):4189–4194CrossRefPubMedGoogle Scholar
  6. 6.
    Perry A, Rasmussen H, Johnson EJ (2009) Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. J Food Compos Anal 22(1):9–15CrossRefGoogle Scholar
  7. 7.
    Khachik F et al (2002) Transformations of selected carotenoids in plasma, liver, and ocular tissues of humans and in nonprimate animal models. Invest Ophthalmol Vis Sci 43(11):3383–3392PubMedGoogle Scholar
  8. 8.
    Snodderly DM (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr 62(6):S1448–S1461CrossRefGoogle Scholar
  9. 9.
    Schweitzer D et al (2010) Suppelementation with lutein and zeaxanthin—a possible protection against age-related macular degeneration. Spektrum Augenheilkd 24(4):242–247CrossRefGoogle Scholar
  10. 10.
    Moeller SM et al (2008) Associations between age-related nuclear cataract and lutein and zeaxanthin in the diet and serum in the carotenoids in the age-related eye disease study, an ancillary study of the women's health initiative. Arch Ophthalmol 126(3):354–364CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Keri L et al (1997) The carotenoids β-carotene, canthaxanthin and zeaxanthin inhibit macrophage-mediated LDL oxidation. FEBS Lett 401:262–266CrossRefGoogle Scholar
  12. 12.
    Scripsema NK, Hu D-N, Rosen RB (2015) Lutein, zeaxanthin, and meso-zeaxanthin in the clinical management of eye disease. J Ophthalmol 865179:1–13CrossRefGoogle Scholar
  13. 13.
    Lindbergh CA et al (2017) Relationship of lutein and zeaxanthin levels to neurocognitive functioning: an fMRI study of older adults. J Int Neuropsychol Soc 23(1):11–22CrossRefPubMedGoogle Scholar
  14. 14.
    Xu J et al (2017) Carotenoids and risk of fracture: a meta-analysis of observational studies. Oncotarget 8(2):2391CrossRefPubMedGoogle Scholar
  15. 15.
    Liu Y et al (2017) Precise regulation of miR-210 is critical for the cellular homeostasis maintenance and transplantation efficacy enhancement of Mesenchymal stem cells in acute liver failure therapy. Cell Transplant 26(5):805–820CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen F et al (2017) Carotenoid intake and risk of non-Hodgkin lymphoma: a systematic review and dose-response meta-analysis of observational studies. Ann Hematol 96(6):957–965CrossRefPubMedGoogle Scholar
  17. 17.
    Nishino H et al (2002) Carotenoids in cancer chemoprevention. Cancer Metastasis Rev 21(3–4):257–264CrossRefPubMedGoogle Scholar
  18. 18.
    Nishino H et al (2000) Cancer prevention by natural carotenoids. Biofactors 13(1–4):89–94CrossRefPubMedGoogle Scholar
  19. 19.
    Asker D, Beppu T, Ueda K (2007) Zeaxanthinibacter enoshimensis gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae, isolated from seawater off Enoshima Island, Japan. Int J Syst Evol Microbiol 57(Pt 4):837–843CrossRefPubMedGoogle Scholar
  20. 20.
    Asker D, Beppu T, Ueda K (2007) Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae. Syst Appl Microbiol 30(4):291–296CrossRefPubMedGoogle Scholar
  21. 21.
    Berry A et al (2003) Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. Int J Syst Evol Microbiol 53(Pt 1):231–238CrossRefPubMedGoogle Scholar
  22. 22.
    Hoshino T, Ojima K, Setoguchi Y (2004) Production of zeaxanthin by recombinant Phaffia rhodozyma strain. PCT Int Appl US 20030923Google Scholar
  23. 23.
    Bhosale P, Bernstein PS (2005) Microbial xanthophylls. Appl Microbiol Biotechnol 68(4):445–455CrossRefPubMedGoogle Scholar
  24. 24.
    Dufossé L (ed) (2009) Microbial and microalgal carotenoids as colourants and supplements. Birkhäuser Verlag, BaselGoogle Scholar
  25. 25.
    März U (2011) FOD025C—the global market for carotenoids. BCC Research, Wellesley, MAGoogle Scholar
  26. 26.
    Bosma TL, Dole JM, Maness NO (2003) Optimizing marigold (Tagetes erecta L.) petal and pigment yield. Crop Sci 43(6):2118–2124CrossRefGoogle Scholar
  27. 27.
    Stankovic I (2004) Zeaxanthin chemical and technical assessment (CTA). In: FAO (ed) 63rd JECFAGoogle Scholar
  28. 28.
    Gierhart DL (1994) Production of zeaxanthin and zeaxanthin-containing compositions. Applied Food Biotechnology, Inc. US 5,308,759Google Scholar
  29. 29.
    Chen F et al (2005) Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed counter-current chromatography. J Chromatogr A 1064(2):183–186CrossRefPubMedGoogle Scholar
  30. 30.
    Liao WL et al (1993) Pigmentation of cultured black tiger prawn by feeding with a Spirulina supplemented diet. Nippon Suisan Gakkaishi/Bull Jpn Soc Sci Fish 59:165–169CrossRefGoogle Scholar
  31. 31.
    Murata N et al (1981) Separation and characterization of thylakoid and cell envelope of the blue-green alga (cyanobacterium) Anacystis nidulans. Plant Cell Physiol 22(5):855–866Google Scholar
  32. 32.
    Withers NW et al (1978) Photosynthetic unit size, carotenoids, and chlorophyll-protein composition of Prochloron sp., a prokaryotic green alga. Proc Natl Acad Sci U S A 75(5):2301–2305CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Liao HH et al. (1995) Carotenoid producing culture using Nespongiococcum excentricum. US Patent 5,437,997Google Scholar
  34. 34.
    Jin ES, Feth B, Melis A (2003) A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions. Biotechnol Bioeng 81(1):115–124CrossRefPubMedGoogle Scholar
  35. 35.
    Andrew Y, Britton G (1990) Photobleaching in the unicellular green alga Dunaliella parva 19/9. Photosynth Res 25:129–136CrossRefGoogle Scholar
  36. 36.
    Ben-Amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene rich globules from Dunaliella bardawil (chlorophyceae). J Phycol 18:529–537CrossRefGoogle Scholar
  37. 37.
    Goodwin TW (1976) Distribution of carotenoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic Press Inc., New YorkGoogle Scholar
  38. 38.
    Palermo JA, Gros EG, Seldes AM (1991) Carotenoids from three red algae of the Corallinaceae. Phytochemistry 30(9):2983–2986CrossRefGoogle Scholar
  39. 39.
    Bhosale P et al (2004) Identification and characterization of a pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye. J Biol Chem 279(47):49447–49454CrossRefPubMedGoogle Scholar
  40. 40.
    Lagarde D, Beuf L, Vermaas W (2000) Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 66(1):64–72CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hundle BS et al (1993) In vitro expression and activity of lycopene cyclase and beta-carotene hydroxylase from Erwinia herbicola. FEBS Lett 315(3):329–334CrossRefPubMedGoogle Scholar
  42. 42.
    Joshi C, Singhal RS (2018) Zeaxanthin production by Paracoccus zeaxanthinifaciens ATCC 21588 in a lab-scale bubble column reactor: artificial intelligence modelling for determination of optimal operational parameters and energy requirements. Korean J Chem Eng 35(1):195–203CrossRefGoogle Scholar
  43. 43.
    Albrecht M, Misawa N, Sandmann G (1999) Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids beta-carotene and zeaxanthin. Biotechnol Lett 21(9):791–795CrossRefGoogle Scholar
  44. 44.
    Asker D, Beppu T, Ueda K (2007) Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl Microbiol Biotechnol 77(2):383–392CrossRefPubMedGoogle Scholar
  45. 45.
    Asker D, Beppu T, Ueda K (2008) Nubsella zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Sphingobacteriaceae isolated from freshwater. Int J Syst Evol Microbiol 58(Pt 3):601–606CrossRefPubMedGoogle Scholar
  46. 46.
    Kametani K, Matsumura T (1983) Determination of 238U, 234U, 226Ra and 228Ra in spring waters of sanin district. Radioisotopes 32(1):18–21CrossRefPubMedGoogle Scholar
  47. 47.
    Asker D et al (2012) Isolation, characterization, and diversity of novel radiotolerant carotenoid-producing bacteria. In: Barredo J-L (ed) Microbial carotenoids from bacteria and microalgae: methods and protocols. Humana Press, New York, pp 21–60CrossRefGoogle Scholar
  48. 48.
    Asker D, Beppu T, Ueda K (2007) Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. Int J Syst Evol Microbiol 57(Pt 7):1435–1441CrossRefPubMedGoogle Scholar
  49. 49.
    Sajilata MG, Singhal RS, Kamat MY (2008) The carotenoid pigment Zeaxanthin—a review. Compr Rev Food Sci Food Saf 7(1):29–49CrossRefGoogle Scholar
  50. 50.
    Jenkins CL et al (1979) The pigment of Pseudomonas paucimobilis is a carotenoid (nostoxanthin), rather than a brominated aryl-polyene (xanthomonadin). Curr Microbiol 3(1):1–4CrossRefGoogle Scholar
  51. 51.
    Rowe NJ et al (2000) Lipid composition and taxonomy of [Pseudomonas] echinoides: transfer to the genus Sphingomonas. Microbiology 146(Pt 11):3007–3012CrossRefPubMedGoogle Scholar
  52. 52.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  53. 53.
    Asker D et al (2012) Novel zeaxanthin-producing bacteria isolated from a radioactive hot spring water. In: Barredo J-L (ed) Microbial carotenoids from bacteria and microalgae: methods and protocols. Humana Press, New York, pp 99–131CrossRefGoogle Scholar
  54. 54.
    Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  55. 55.
    Beveridge TJ, Popkin TJ, Cole RM (1994) Electron microscopy. In P. Gerhardt (ed.), Methods for general molecular bacteriology. American Society for Microbiology, Washington, D.C., pp 42–71Google Scholar
  56. 56.
    Norris JR, Ribbons DW, Varma AK (1985) Methods in microbiology. Academic Press, LondonGoogle Scholar
  57. 57.
    Cowan ST, Steel KJ (1993) Manual for the identification of medical bacteria. Cambridge University Press, LondonGoogle Scholar
  58. 58.
    Collins MD (1994) Isoprenoid quinones. In: O’Donnell MGAG (ed) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 265–310Google Scholar
  59. 59.
    Kawahara K et al (1991) Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Lett 292(1–2):107–110PubMedGoogle Scholar
  60. 60.
    Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51(Pt 4):1405–1417CrossRefPubMedGoogle Scholar
  61. 61.
    Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202CrossRefGoogle Scholar
  62. 62.
    Mesbah M, Whitman WB (1989) Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479(2):297–306CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dalal Asker
    • 1
    • 2
  • Tarek S. Awad
    • 2
  • Teruhiko Beppu
    • 3
  • Kenji Ueda
    • 3
  1. 1.Food Science and Technology Department, Faculty of AgricultureAlexandria UniversityAlexandriaEgypt
  2. 2.Department of Materials Science and EngineeringUniversity of TorontoTorontoCanada
  3. 3.Life Science Research Center, College of Bioresource SciencesNihon UniversityFujisawaJapan

Personalised recommendations