Advertisement

Predicting Functions of Disordered Proteins with MoRFpred

  • Christopher J. Oldfield
  • Vladimir N. Uversky
  • Lukasz Kurgan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1851)

Abstract

Intrinsically disordered proteins and regions are involved in a wide range of cellular functions, and they often facilitate protein-protein interactions. Molecular recognition features (MoRFs) are segments of intrinsically disordered regions that bind to partner proteins, where binding is concomitant with a transition to a structured conformation. MoRFs facilitate translation, transport, signaling, and regulatory processes and are found across all domains of life. A popular computational tool, MoRFpred, accurately predicts MoRFs in protein sequences. MoRFpred is implemented as a user-friendly web server that is freely available at http://biomine.cs.vcu.edu/servers/MoRFpred/. We describe this predictor, explain how to run the web server, and show how to interpret the results it generates. We also demonstrate the utility of this web server based on two case studies, focusing on the relevance of evolutionary conservation of MoRF regions.

Key words

Intrinsic disorder Prediction Molecular recognition features MoRFs Protein-protein interactions MoRFpred 

References

  1. 1.
    Wang C, Uversky VN, Kurgan L (2016) Disordered nucleiome: abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea. Proteomics 16(10):1486–1498PubMedCrossRefGoogle Scholar
  2. 2.
    Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L (2015) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 72(1):137–151PubMedCrossRefGoogle Scholar
  3. 3.
    Habchi J, Tompa P, Longhi S, Uversky VN (2014) Introducing protein intrinsic disorder. Chem Rev 114(13):6561–6588PubMedCrossRefGoogle Scholar
  4. 4.
    Dunker AK, Babu MM, Barbar E, Blackledge M, Bondos SE, Dosztányi Z, Dyson HJ, Forman-Kay J, Fuxreiter M, Gsponer J, Han K-H, Jones DT, Longhi S, Metallo SJ, Nishikawa K, Nussinov R, Obradovic Z, Pappu RV, Rost B, Selenko P, Subramaniam V, Sussman JL, Tompa P, Uversky VN (2013) What’s in a name? Why these proteins are intrinsically disordered. Intrinsically Disord Proteins 1(1):e24157PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW, Oldfield CJ (2002) Evolutionary rate heterogeneity in proteins with long disordered regions. J Mol Evol 55:104PubMedCrossRefGoogle Scholar
  6. 6.
    Meszaros B, Tompa P, Simon I, Dosztanyi Z (2007) Molecular principles of the interactions of disordered proteins. J Mol Biol 372(2):549–561PubMedCrossRefGoogle Scholar
  7. 7.
    Trudeau T, Nassar R, Cumberworth A, Wong ET, Woollard G, Gsponer J (2013) Structure and intrinsic disorder in protein autoinhibition. Structure 21(3):332–341PubMedCrossRefGoogle Scholar
  8. 8.
    Varadi M, Guharoy M, Zsolyomi F, Tompa P (2015) DisCons: a novel tool to quantify and classify evolutionary conservation of intrinsic protein disorder. BMC Bioinformatics 16(1):153PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Ait-Bara S, Carpousis AJ, Quentin Y (2015) RNase E in the gamma-Proteobacteria: conservation of intrinsically disordered noncatalytic region and molecular evolution of microdomains. Mol Genet Genomics 290(3):847–862PubMedCrossRefGoogle Scholar
  10. 10.
    Davey NE, Cyert MS, Moses AM (2015) Short linear motifs – ex nihilo evolution of protein regulation. Cell Commun Signal 13(1):43PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Mohan A, Oldfield CJ, Radivojac P, Vacic V, Cortese MS, Dunker AK, Uversky VN (2006) Analysis of molecular recognition features (MoRFs). J Mol Biol 362(5):1043–1059PubMedCrossRefGoogle Scholar
  12. 12.
    Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, Uversky VN, Dunker AK (2007) Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res 6(6):2351–2366PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Oldfield CJ, Cheng Y, Cortese MS, Romero P, Uversky VN, Dunker AK (2005) Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44(37):12454–12470PubMedCrossRefGoogle Scholar
  14. 14.
    Yan J, Dunker AK, Uversky VN, Kurgan L (2016) Molecular recognition features (MoRFs) in three domains of life. Mol BioSyst 12(3):697–710PubMedCrossRefGoogle Scholar
  15. 15.
    Cheng Y, Oldfield CJ, Meng J, Romero P, Uversky VN, Dunker AK (2007) Mining α-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry 46(47):13468–13477PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Malhis N, Gsponer J (2015) Computational identification of MoRFs in protein sequences. Bioinformatics 31(11):1738–1744PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Disfani FM, Hsu WL, Mizianty MJ, Oldfield CJ, Xue B, Dunker AK, Uversky VN, Kurgan L (2012) MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics 28(12):i75–i83PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Malhis N, Jacobson M, Gsponer J (2016) MoRFchibi SYSTEM: software tools for the identification of MoRFs in protein sequences. Nucleic Acids Res 44:W488PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Jones DT, Cozzetto D (2015) DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31(6):857–863PubMedCrossRefGoogle Scholar
  20. 20.
    Fang C, Noguchi T, Tominaga D, Yamana H (2013) MFSPSSMpred: identifying short disorder-to-order binding regions in disordered proteins based on contextual local evolutionary conservation. BMC Bioinformatics 14:300PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Xue B, Dunker AK, Uversky VN (2010) Retro-MoRFs: identifying protein binding sites by normal and reverse alignment and intrinsic disorder prediction. Int J Mol Sci 11(10):3725–3747PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Puntervoll P, Linding R, Gemünd C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin DMA, Ausiello G, Brannetti B, Costantini A, Ferrè F, Maselli V, Via A, Cesareni G, Diella F, Superti-Furga G, Wyrwicz L, Ramu C, McGuigan C, Gudavalli R, Letunic I, Bork P, Rychlewski L, Küster B, Helmer-Citterich M, Hunter WN, Aasland R, Gibson TJ (2003) ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31(13):3625–3630PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Meszaros B, Dosztanyi Z, Simon I (2012) Disordered binding regions and linear motifs--bridging the gap between two models of molecular recognition. PLoS One 7(10):e46829PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Peng Z, Wang C, Uversky VN, Kurgan L (2017) Prediction of disordered RNA, DNA, and protein binding regions using DisoRDPbind. Methods Mol Biol 1484:187–203PubMedCrossRefGoogle Scholar
  25. 25.
    Meszaros B, Simon I, Dosztanyi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5(5):e1000376PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Dosztanyi Z, Meszaros B, Simon I (2009) ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25(20):2745–2746PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Khan W, Duffy F, Pollastri G, Shields DC, Mooney C (2013) Predicting binding within disordered protein regions to structurally characterised peptide-binding domains. PLoS One 8(9):e72838PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434PubMedCrossRefGoogle Scholar
  30. 30.
    Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT (2004) The DISOPRED server for the prediction of protein disorder. Bioinformatics 20(13):2138–2139PubMedCrossRefGoogle Scholar
  31. 31.
    McGuffin LJ (2008) Intrinsic disorder prediction from the analysis of multiple protein fold recognition models. Bioinformatics 24(16):1798–1804PubMedCrossRefGoogle Scholar
  32. 32.
    Mizianty MJ, Stach W, Chen K, Kedarisetti KD, Disfani FM, Kurgan L (2010) Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. Bioinformatics 26(18):i489–i496PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Faraggi E, Xue B, Zhou Y (2009) Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network. Proteins 74(4):847–856PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Schlessinger A, Yachdav G, Rost B (2006) PROFbval: predict flexible and rigid residues in proteins. Bioinformatics 22(7):891–893PubMedCrossRefGoogle Scholar
  35. 35.
    Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M (2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 36(Database issue):D202–D205PubMedGoogle Scholar
  36. 36.
    Tate RF (1954) Correlation between a discrete and a continuous variable. Point-Biserial correlation. Ann Math Statist 25(3):603–607CrossRefGoogle Scholar
  37. 37.
    Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, Tom E, Mack DH, Levine AJ (2000) Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 14(8):981–993PubMedPubMedCentralGoogle Scholar
  38. 38.
    Balint EE, Vousden KH (2001) Activation and activities of the p53 tumour suppressor protein. Br J Cancer 85(12):1813–1823PubMedCentralCrossRefGoogle Scholar
  39. 39.
    el-Deiry WS (1998) Regulation of p53 downstream genes. Semin Cancer Biol 8(5):345–357PubMedCrossRefGoogle Scholar
  40. 40.
    Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B (1999) Identification and classification of p53-regulated genes. Proc Natl Acad Sci U S A 96(25):14517–14522PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sax JK, El-Deiry WS (2003) p53-induced gene expression analysis. Methods Mol Biol 234:65–71PubMedGoogle Scholar
  42. 42.
    Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22(56):9030–9040PubMedCrossRefGoogle Scholar
  43. 43.
    Anderson CW, Appella E (2004) Signaling to the p53 tumor suppressor through pathways activated by genotoxic and nongenotoxic stress. In: Bradshaw RA, Dennis EA (eds) Handbook of cell signaling. Academic Press, New York, pp 237–247Google Scholar
  44. 44.
    Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M (2002) Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21(8):1299–1303PubMedCrossRefGoogle Scholar
  45. 45.
    Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14(5):381–395PubMedCrossRefGoogle Scholar
  46. 46.
    Abraham AG, O'Neill E (2014) PI3K/Akt-mediated regulation of p53 in cancer. Biochem Soc Trans 42(4):798–803PubMedCrossRefGoogle Scholar
  47. 47.
    Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15(1):2–8PubMedCrossRefGoogle Scholar
  48. 48.
    Soussi T, Beroud C (2001) Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1(3):233–240PubMedCrossRefGoogle Scholar
  49. 49.
    Bookstein R (1994) Tumor suppressor genes in prostatic oncogenesis. J Cell Biochem Suppl 19:217–223PubMedGoogle Scholar
  50. 50.
    Pencik J, Wiebringhaus R, Susani M, Culig Z, Kenner L (2015) IL-6/STAT3/ARF: the guardians of senescence, cancer progression and metastasis in prostate cancer. Swiss Med Wkly 145:w14215PubMedGoogle Scholar
  51. 51.
    Wolff JM, Stephenson RN, Jakse G, Habib FK (1994) Retinoblastoma and p53 genes as prognostic indicators in urological oncology. Urol Int 53(1):1–5PubMedCrossRefGoogle Scholar
  52. 52.
    Joerger AC, Ang HC, Veprintsev DB, Blair CM, Fersht AR (2005) Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations. J Biol Chem 280(16):16030–16037PubMedCrossRefGoogle Scholar
  53. 53.
    Canadillas JM, Tidow H, Freund SM, Rutherford TJ, Ang HC, Fersht AR (2006) Solution structure of p53 core domain: structural basis for its instability. Proc Natl Acad Sci U S A 103(7):2109–2114PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wang Y, Rosengarth A, Luecke H (2007) Structure of the human p53 core domain in the absence of DNA. Acta Crystallogr D Biol Crystallogr 63(Pt 3):276–281PubMedCrossRefGoogle Scholar
  55. 55.
    Joerger AC, Fersht AR (2008) Structural biology of the tumor suppressor p53. Annu Rev Biochem 77:557–582PubMedCrossRefGoogle Scholar
  56. 56.
    Uversky VN, Oldfield CJ, Midic U, Xie H, Xue B, Vucetic S, Iakoucheva LM, Obradovic Z, Dunker AK (2009) Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics 10(Suppl 1):S7PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bianco R, Ciardiello F, Tortora G (2005) Chemosensitization by antisense oligonucleotides targeting MDM2. Curr Cancer Drug Targets 5(1):51–56PubMedCrossRefGoogle Scholar
  58. 58.
    Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1(14):1001–1008PubMedGoogle Scholar
  59. 59.
    Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R (2013) The MDM2-p53 pathway revisited. J Biomed Res 27(4):254–271PubMedPubMedCentralGoogle Scholar
  60. 60.
    Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274(5289):948–953PubMedCrossRefGoogle Scholar
  61. 61.
    Bochkareva E, Kaustov L, Ayed A, Yi GS, Lu Y, Pineda-Lucena A, Liao JC, Okorokov AL, Milner J, Arrowsmith CH, Bochkarev A (2005) Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc Natl Acad Sci U S A 102(43):15412–15417PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Mora P, Carbajo RJ, Pineda-Lucena A, Sanchez del Pino MM, Perez-Paya E (2008) Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach. Proteins 71(4):1670–1685PubMedCrossRefGoogle Scholar
  63. 63.
    Lowe ED, Tews I, Cheng KY, Brown NR, Gul S, Noble ME, Gamblin SJ, Johnson LN (2002) Specificity determinants of recruitment peptides bound to phospho-CDK2/cyclin A. Biochemistry 41(52):15625–15634PubMedCrossRefGoogle Scholar
  64. 64.
    Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C (2002) Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell 10(3):523–535PubMedCrossRefGoogle Scholar
  65. 65.
    Mujtaba S, He Y, Zeng L, Yan S, Plotnikova O, Sachchidanand SR, Zeleznik-Le NJ, Ronai Z, Zhou MM (2004) Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell 13(2):251–263PubMedCrossRefGoogle Scholar
  66. 66.
    Rustandi RR, Baldisseri DM, Weber DJ (2000) Structure of the negative regulatory domain of p53 bound to S100B(betabeta). Nat Struct Biol 7(7):570–574PubMedCrossRefGoogle Scholar
  67. 67.
    Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9(Suppl 1):S1PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7:208PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ehretsmann CP, Carpousis AJ, Krisch HM (1992) Specificity of Escherichia coli endoribonuclease RNase E: in vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site. Genes Dev 6(1):149–159PubMedCrossRefGoogle Scholar
  70. 70.
    Huang H, Liao J, Cohen SN (1998) Poly(A)- and poly(U)-specific RNA 3′ tail shortening by E. coli ribonuclease E. Nature 391(6662):99–102PubMedCrossRefGoogle Scholar
  71. 71.
    Kushner SR (2002) mRNA decay in Escherichia coli comes of age. J Bacteriol 184(17):4658–4665 discussion 4657PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Ow MC, Kushner SR (2002) Initiation of tRNA maturation by RNase E is essential for cell viability in E. coli. Genes Dev 16(9):1102–1115PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Steege DA (2000) Emerging features of mRNA decay in bacteria. RNA 6(8):1079–1090PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Casaregola S, Jacq A, Laoudj D, McGurk G, Margarson S, Tempete M, Norris V, Holland IB (1992) Cloning and analysis of the entire Escherichia coli ams gene. ams is identical to hmp1 and encodes a 114 kDa protein that migrates as a 180 kDa protein. J Mol Biol 228(1):30–40PubMedCrossRefGoogle Scholar
  75. 75.
    Claverie-Martin F, Diaz-Torres MR, Yancey SD, Kushner SR (1991) Analysis of the altered mRNA stability (ams) gene from Escherichia coli. Nucleotide sequence, transcriptional analysis, and homology of its product to MRP3, a mitochondrial ribosomal protein from Neurospora crassa. J Biol Chem 266(5):2843–2851PubMedGoogle Scholar
  76. 76.
    Lopez PJ, Marchand I, Joyce SA, Dreyfus M (1999) The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Mol Microbiol 33(1):188–199PubMedCrossRefGoogle Scholar
  77. 77.
    Cohen SN, McDowall KJ (1997) RNase E: still a wonderfully mysterious enzyme. Mol Microbiol 23(6):1099–1106PubMedCrossRefGoogle Scholar
  78. 78.
    McDowall KJ, Cohen SN (1996) The N-terminal domain of the rne gene product has RNase E activity and is non-overlapping with the arginine-rich RNA-binding site. J Mol Biol 255(3):349–355PubMedCrossRefGoogle Scholar
  79. 79.
    Wachi M, Umitsuki G, Shimizu M, Takada A, Nagai K (1999) Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5′ end of 16S rRNA. Biochem Biophys Res Commun 259(2):483–488PubMedCrossRefGoogle Scholar
  80. 80.
    Kaberdin VR, Miczak A, Jakobsen JS, Lin-Chao S, McDowall KJ, von Gabain A (1998) The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. Proc Natl Acad Sci U S A 95(20):11637–11642PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Callaghan AJ, Aurikko JP, Ilag LL, Gunter Grossmann J, Chandran V, Kuhnel K, Poljak L, Carpousis AJ, Robinson CV, Symmons MF, Luisi BF (2004) Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E. J Mol Biol 340(5):965–979PubMedCrossRefGoogle Scholar
  82. 82.
    Taraseviciene L, Bjork GR, Uhlin BE (1995) Evidence for an RNA binding region in the Escherichia coli processing endoribonuclease RNase E. J Biol Chem 270(44):26391–26398PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of MedicineUniversity of South FloridaTampaUSA
  3. 3.Institute for Biological Instrumentation, Russian Academy of SciencesMoscow RegionRussia

Personalised recommendations