Advertisement

Recombinant CHO Cell Pool Generation Using piggyBac Transposon System

  • Sowmya Balasubramanian
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1850)

Abstract

CHO cell pools with desirable characteristics of high titer and consistent product quality are useful for rapid production of recombinant proteins. Here we describe the generation of CHO cell pools using the piggyBac transposon system for mediating gene integration. The method describes the co-transfection of cells with the donor plasmid (coding for the gene of interest) and the helper plasmid (coding for the transposase) using polyethyleneimine (PEI). This is followed by a genetic selection for the generation of a cell pool. The resulting cell pool can be used to start a batch or fed-batch culture. Alternatively it can be used for generation of clonal cell lines or generation of cell banks for future use.

Key words

CHO cells Transposon system Transfection Orbital shaking Recombinant protein 

References

  1. 1.
    Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398CrossRefGoogle Scholar
  2. 2.
    Walsh G (2014) Biopharmaceutical benchmarks. Nat Biotechnol 32:992–1000CrossRefGoogle Scholar
  3. 3.
    Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R (2016) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 36:1110–1122CrossRefGoogle Scholar
  4. 4.
    Ye J, Alvin K, Latif H, Hsu A, Parikh V, Whitmer T, Tellers M, de la Cruz Edmonds MC, Ly J, Salmon P, Markusen JF (2010) Rapid protein production using CHO stable transfection pools. Biotechnol Prog 26:1431–1437CrossRefGoogle Scholar
  5. 5.
    Balasubramanian S, Matasci M, Kadlecova Z, Baldi L, Hacker DL, Wurm FM (2015) Rapid recombinant protein production from piggyBac transposon-mediated stable CHO cell pools. J Biotechnol 200:61–69CrossRefGoogle Scholar
  6. 6.
    Fan L, Rizzi G, Bierilo K, Tian J, Yee JC, Russell R, Das TK (2017) Comparative study of therapeutic antibody candidates derived from mini-pool and clonal cell lines. Biotechnol Prog. 33:1456–1462.  https://doi.org/10.1002/btpr.2477
  7. 7.
    Hu Z, Hsu W, Pynn A, Ng D, Quicho D, Adem Y, Kwong Z, Mauger B, Joly J, Snedecor B, Laird MW, Andersen DC, Shen A (2017) A strategy to accelerate protein production from a pool of clones in Chinese hamster ovary cells for toxicology studies. Biotechnol Prog. 33:1449–1455.  https://doi.org/10.1002/btpr.2467
  8. 8.
    Munro TP, Le K, Le H, Zhang L, Stevens J, Soice N, Benchaar SA, Hong RW, Goudar CT (2017) Accelerating patient access to novel biologics using stable pool-derived product for non-clinical studies and single clone-derived product for clinical studies. Biotechnol Prog. 33:1476–1482.  https://doi.org/10.1002/btpr.2572
  9. 9.
    Rajendra Y, Balasubramanian S, McCracken NA, Norris DL, Lian Z, Schmitt MG, Frye CC, Barnard GC (2017) Evaluation of piggyBac-mediated CHO pools to enable material generation to support GLP toxicology studies. Biotechnol Prog. 33:1436–1448.  https://doi.org/10.1002/btpr.2495
  10. 10.
    Scarcelli JJ, Shang TQ, Iskra T, Allen MJ, Zhang L (2017) Strategic deployment of CHO expression platforms to deliver Pfizer's monoclonal antibody portfolio. Biotechnol Prog. 33:1463–1467.  https://doi.org/10.1002/btpr.2493
  11. 11.
    Matasci M, Baldi L, Hacker DL, Wurm FM (2011) The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability. Biotechnol Bioeng 108:2141–2150CrossRefGoogle Scholar
  12. 12.
    Balasubramanian S, Rajendra Y, Baldi L, Hacker DL, Wurm FM (2016) Comparison of three transposons for the generation of highly productive recombinant CHO cell pools and cell lines. Biotechnol Bioeng 113:1234–1243CrossRefGoogle Scholar
  13. 13.
    Rajendra Y, Balasubramanian S, Peery RB, Swartling JR, McCracken NA, Norris DL, Frye CC, Barnard GC (2017) Bioreactor scale up and protein product quality characterization of piggyBac transposon derived CHO pools. Biotechnol Prog 33:534–540CrossRefGoogle Scholar
  14. 14.
    Huang X, Guo H, Tammana S, Jung Y-C, Mellgren E, Bassi P, Cao Q, Tu ZJ, Kim YC, Ekker SC, Wu X, Wang SM, Zhou X (2010) Gene transfer efficiency and genome-wide integration profiling of sleeping beauty, Tol2, and piggyBac transposons in human primary T cells. Mol Ther 18:1803–1813CrossRefGoogle Scholar
  15. 15.
    Wu SC-Y, Meir Y-JJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, Kaminski JM (2006) piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci U S A 103:15008–15013CrossRefGoogle Scholar
  16. 16.
    Rajendra Y, Peery RB, Barnard GC (2016) Generation of stable Chinese hamster ovary pools yielding antibody titers of up to 7.6 g/L using the piggyBac transposon system. Biotechnol Prog 32:1301–1307CrossRefGoogle Scholar
  17. 17.
    Alattia J-R, Matasci M, Dimitrov M, Aeschbach L, Balasubramanian S, Hacker DL, Wurm FM, Fraering PC (2013) Highly efficient production of the Alzheimer's γ-secretase integral membrane protease complex by a multi-gene stable integration approach. Biotechnol Bioeng 110:1995–2005CrossRefGoogle Scholar
  18. 18.
    Balasubramanian S, Wurm FM, Hacker DL (2016) Multigene expression in stable CHO cell pools generated with the piggyBac transposon system. Biotechnol Prog 32:1308–1317CrossRefGoogle Scholar
  19. 19.
    Hacker DL, Balasubramanian S (2016) Recombinant protein production from stable mammalian cell lines and pools. Curr Opin Struct Biol 38:129–136CrossRefGoogle Scholar
  20. 20.
    Rajendra Y, Peery RB, Hougland MD, Barnard GC, Wu X, Fitchett JR, Bacica M, Demarest SJ (2017) Transient and stable CHO expression, purification and characterization of novel hetero-dimeric bispecific IgG antibodies. Biotechnol Prog 33:469–477CrossRefGoogle Scholar
  21. 21.
    Bire S, Ley D, Casteret S, Mermod N, Bigot Y, Rouleux-Bonnin F (2013) Optimization of the piggyBac transposon using mRNA and insulators: toward a more reliable gene delivery system. PLoS One 8:e82559CrossRefGoogle Scholar
  22. 22.
    Oguchi S, Saito H, Tsukahara M, Tsumura H (2006) pH condition in temperature shift cultivation enhances cell longevity and specific hMab productivity in CHO culture. Cytotechnology 52:199–207CrossRefGoogle Scholar
  23. 23.
    Li F, Vijayasankaran N, Shen A, Kiss R, Amanullah A (2010) Cell culture processes for monoclonal antibody production. MAbs 2:466–477CrossRefGoogle Scholar
  24. 24.
    Balasubramanian S (2015) Study of transposon-mediated cell pool and cell line generation in CHO cells. Thesis No. 6563, Ecole Polytechnique Federale de Lausanne (EPFL)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sowmya Balasubramanian
    • 1
    • 2
  1. 1.Laboratory of Cellular Biotechnology (LBTC)École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.ATUMNewarkUSA

Personalised recommendations