Advertisement

Single-Cell Genomics of Microbial Dark Matter

  • Christian Rinke
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1849)

Abstract

Single-cell genomics allows bypassing the culturing step and to directly access environmental microbes one cell at a time. The method has been successfully applied to explore archaeal and bacterial candidate phyla, referred to as microbial dark matter. Here I summarize the single-cell genomics workflow, including sample preparation and preservation, high-throughput fluorescence-activated cell sorting, cell lysis and amplification of environmental samples. Furthermore I describe phylogenetic screening based on 16S rRNA genes and suggest a suitable library preparation and sequencing approach.

Key words

Single-cell genomics Microbial dark matter Fluorescence-activated cell sorting FACS Multiple genome amplification 16S rRNA gene ILLUMINA Nextera XT libraries Biofilm Sludge Sediment 

Notes

Acknowledgments

The work was conducted at the Australian Centre for Ecogenomics (ACE) at UQ, and was supported by the ARC Discovery Project DP160103811. I would like to thank the ACE team for support, especially Dr. Michael Nefedov and Alexander Baker.

References

  1. 1.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedPubMedCentralGoogle Scholar
  2. 2.
    Dodsworth JA, Blainey PC, Murugapiran SK, Swingley WD, Ross CA, Tringe SG, Chain PSG, Scholz MB, Lo C-C, Raymond J, Quake SR, Hedlund BP (2013) Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat Commun 4:1854.  https://doi.org/10.1038/ncomms2884CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kamke J, Sczyrba A, Ivanova N, Schwientek P, Rinke C, Mavromatis K, Woyke T, Hentschel U (2013) Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME J 7(12):2287–2300.  https://doi.org/10.1038/ismej.2013.111CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Campbell JH, O’Donoghue P, Campbell AG, Schwientek P, Sczyrba A, Woyke T, Söll D, Podar M (2013) UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc Natl Acad Sci 110:5540–5545.  https://doi.org/10.1073/pnas.1303090110CrossRefPubMedGoogle Scholar
  5. 5.
    McLean JS, Lombardo M-J, Badger JH, Edlund A, Novotny M, Yee-Greenbaum J, Vyahhi N, Hall AP, Yang Y, Dupont CL, Ziegler MG, Chitsaz H, Allen AE, Yooseph S, Tesler G, Pevzner PA, Friedman RM, Nealson KH, Venter JC, Lasken RS (2013) Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci 110(26):E2390–E2399.  https://doi.org/10.1073/pnas.1219809110CrossRefPubMedGoogle Scholar
  6. 6.
    Marcy Y, Ouverney C, Bik EM, Lösekann T, Ivanova N, Martin HG, Szeto E, Platt D, Hugenholtz P, Relman DA, Quake SR (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci 104:11889–11894.  https://doi.org/10.1073/pnas.0704662104CrossRefPubMedGoogle Scholar
  7. 7.
    Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu W-T, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437.  https://doi.org/10.1038/nature12352CrossRefPubMedGoogle Scholar
  8. 8.
    Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR, Stocker R, Follows MJ, Stepanauskas R, Chisholm SW (2014) Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344:416–420.  https://doi.org/10.1126/science.1248575CrossRefPubMedGoogle Scholar
  9. 9.
    Yoon HS, Price DC, Stepanauskas R, Rajah VD, Sieracki ME, Wilson WH, Yang EC, Duffy S, Bhattacharya D (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332:714–717.  https://doi.org/10.1126/science.1203163CrossRefPubMedGoogle Scholar
  10. 10.
    Woyke T, Tighe D, Mavromatis K, Clum A, Copeland A, Schackwitz W, Lapidus A, Wu D, McCutcheon JP, McDonald BR, Moran NA, Bristow J, Cheng J-F (2010) One bacterial cell, one complete genome. PLoS One 5:e10314.  https://doi.org/10.1371/journal.pone.0010314CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Landry ZC, Giovanonni SJ, Quake SR, Blainey PC (2013) Chapter 4: Optofluidic cell selection from complex microbial communities for single-genome analysis. In: DeLong EF (ed) Methods Enzymol. Academic Press, Cambridge, pp 61–90Google Scholar
  12. 12.
    Frumkin D, Wasserstrom A, Itzkovitz S, Harmelin A, Rechavi G, Shapiro E (2008) Amplification of multiple genomic loci from single cells isolated by laser micro-dissection of tissues. BMC Biotechnol 8:17.  https://doi.org/10.1186/1472-6750-8-17CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N, Dmitrieff E, Malmstrom R, Stepanauskas R, Woyke T (2014) Obtaining genomes from uncultivated environmental microorganisms using FACS–based single-cell genomics. Nat Protoc 9:1038–1048CrossRefGoogle Scholar
  14. 14.
    Clingenpeel S, Clum A, Schwientek P, Rinke C, Woyke T (2014) Reconstructing each cell’s genome within complex microbial communities - dream or reality? Microb Physiol Metab 5:771.  https://doi.org/10.3389/fmicb.2014.00771CrossRefGoogle Scholar
  15. 15.
    Zong C, Lu S, Chapman AR, Xie XS (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338:1622–1626.  https://doi.org/10.1126/science.1229164CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    de Bourcy CFA, De Vlaminck I, Kanbar JN, Wang J, Gawad C, Quake SR (2014) A quantitative comparison of single-cell whole genome amplification methods. PLoS One 9:e105585.  https://doi.org/10.1371/journal.pone.0105585CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rinke C, Serene L, Ben W, Jean-Baptiste R, Adam S, Xuyen L, Margaret KB, Stocker R, Seymour J, Tyson GW, Hugenholtz P (2016) Validation of picogram-input DNA libraries for microscale metagenomic. PeerJ 4:e2486.  https://doi.org/10.7717/peerj.2486CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Thomsen PF, Willerslev E (2015) Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18.  https://doi.org/10.1016/j.biocon.2014.11.019CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Australian Centre for EcogenomicsUniversity of QueenslandBrisbaneAustralia

Personalised recommendations