Advertisement

Characterizing the Deep Terrestrial Subsurface Microbiome

  • Rebecca A. Daly
  • Kelly C. Wrighton
  • Michael J. Wilkins
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1849)

Abstract

A large portion of the earth’s biomass resides in the subsurface and recent studies have expanded our knowledge of indigenous microbial life. Advances in the field of metagenomics now allow analysis of microbial communities from low-biomass samples such as deep (>2.5 km) shale core samples. Here we present protocols for the best practices in contamination control, handling core material, extraction of nucleic acids, and low-input library preparation for subsequent metagenomic sequencing.

Key words

Deep life Deep biosphere Terrestrial subsurface Contamination Shale Metagenomics Low biomass 

Notes

Acknowledgments

Rebecca Daly, Kelly Wrighton and Michael Wilkins were partially supported by funding from the National Sciences Foundation Dimensions of Biodiversity (Award No. 1342701) and by the Marcellus Shale Energy and Environment Laboratory (MSEEL) funded by Department of Energy’s National Energy Technology laboratory (DOE-NETL) grant DE#FE0024297.

References

  1. 1.
    McMahon S, Parnell J (2013) Weighing the deep continental biosphere. FEMS Microbiol Ecol 87(1):113–120CrossRefGoogle Scholar
  2. 2.
    Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95(12):6578–6583CrossRefGoogle Scholar
  3. 3.
    Wilkins MJ, Daly R, Mouser PJ, Trexler R (2014) Trends and future challenges in sampling the deep terrestrial biosphere. Front Microbiol 5:481.  https://doi.org/10.3389/fmicb.2014.00481CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kallmeyer J, Mangelsdorf K, Cragg B, Horsfield B (2006) Techniques for contamination assessment during drilling for terrestrial subsurface sediments. Geomicrobiol J 23(3–4):227–239CrossRefGoogle Scholar
  5. 5.
    Kieft TL, Onstott TC, Ahonen L, Aloisi V, Colwell FS, Engelen B, Fendrihan S, Gaidos E, Harms U, Head I, Kallmeyer J, Kiel Reese B, Lin LH, Long PE, Moser DP, Mills H, Sar P, Schulze-Makuch D, Stan-Lotter H, Wagner D, Wang PL, Westall F, Wilkins MJ (2015) Workshop to develop deep-life continental scientific drilling projects. Sci Drill 19:43–53CrossRefGoogle Scholar
  6. 6.
    Tsesmetzis N, Maguire MJ, Head IM, Lomans BP (2016) Protocols for investigating the microbial communities of oil and gas reservoirs. In: McGenity TJ, Timmis KN, Nogales Fernandez B (eds) Hydrocarbon and lipid microbiology protocols. Humana Press, Totowa, NJGoogle Scholar
  7. 7.
    Zhang G, Dong H, Xu Z, Zhao D, Zhang C (2005) Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese continental scientific drilling project in China. Appl Environ Microbiol 71(6):3213–3227CrossRefGoogle Scholar
  8. 8.
    Santelli CM, Banerjee N, Bach W, Edwards KJ (2010) Tapping the subsurface ocean crust biosphere: low biomass and drilling-related contamination calls for improved quality controls. Geomicrobiol J 27(2):158–116CrossRefGoogle Scholar
  9. 9.
    Wandrey M, Morozova D, Zettlitzer M, Würdemann H, Group CS (2010) Assessing drilling mud and technical fluid contamination in rock core and brine samples intended for microbiological monitoring at the CO2 storage site in Ketzin using fluorescent dye tracers. Int J Greenhouse Gas Control 4(6):972–980CrossRefGoogle Scholar
  10. 10.
    Cardace D, Hoehler T, McCollom T, Schrenk M, Carnevale D, Kubo M, Twing K (2013) Establishment of the coast range ophiolite microbial observatory (CROMO): drilling objectives and preliminary outcomes. Sci Drill 16:45–55CrossRefGoogle Scholar
  11. 11.
    Kieft TL, Phelps TJ, Fredrickson JK (2007) Drilling, coring, and sampling subsurface environments. In: Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (eds) Manual of environmental microbiology, Third Edition. ASM Press, Washington, DC, pp 799–817CrossRefGoogle Scholar
  12. 12.
    Pfiffner SM, Onstott TC, Ruskeeniemi T, Talikka M, Bakermans C, McGown D, Chan E, Johnson A, Phelps TJ, Puil ML, Difurio SA, Pratt LM, Stotler R, Frape S, Telling J, Lollar BS, Neill I, Zerbin B (2008) Challenges for coring deep permafrost on earth and Mars. Astrobiology 8(3):623–638CrossRefGoogle Scholar
  13. 13.
    Yanagawa K, Nunoura T, McAllister S (2013) The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331). Front Microbiol 4:327.  https://doi.org/10.3389/fmicb.2013.00327CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for Coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66(12):5488–5491CrossRefGoogle Scholar
  15. 15.
    Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV, Tiedje JM, Zhou J (2001) Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol 67(10):4495–4503CrossRefGoogle Scholar
  16. 16.
    Lever MA, Torti A, Eickenbusch P, Michaud AB, Ŝantl-Temkiv T, Jørgensen BB (2015) A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Front Microbiol 6(327):1281Google Scholar
  17. 17.
    Morono Y, Terada T, Hoshino T, Inagaki F (2014) A hot-alkaline DNA extraction method for deep subseafloor archaeal communities. Appl Environ Microbiol 80(6):1985–1994CrossRefGoogle Scholar
  18. 18.
    Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62(2):316–322PubMedPubMedCentralGoogle Scholar
  19. 19.
    Bowers RM, Clum A, Tice H, Lim J, Singh K, Ciobanu D, Ngan CY, Cheng J-F, Tringe SG, Woyke T (2015) Impact of library preparation protocols and template quantity on the metagenomic reconstruction of a mock microbial community. BMC Genomics 16:856.  https://doi.org/10.1186/s12864-015-2063-6CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chafee M, Maignien L, Simmons SL (2014) The effects of variable sample biomass on comparative metagenomics. Environ Microbiol 17(7):2239–2253CrossRefGoogle Scholar
  21. 21.
    Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12(1):87CrossRefGoogle Scholar
  22. 22.
    Woyke T, Sczyrba A, Lee J, Rinke C, Tighe D, Clingenpeel S, Malmstrom R, Stepanauskas R, Cheng J-F (2011) Decontamination of MDA reagents for single cell whole genome amplification. PLoS One 6(10):e26161CrossRefGoogle Scholar
  23. 23.
    Barton HA, Taylor NM, Lubbers BR, Pemberton AC (2006) DNA extraction from low-biomass carbonate rock: an improved method with reduced contamination and the low-biomass contaminant database. J Microbiol Methods 66(1):21–31CrossRefGoogle Scholar
  24. 24.
    Direito SOL, Marees A, Röling WFM (2012) Sensitive life detection strategies for low-biomass environments: optimizing extraction of nucleic acids adsorbing to terrestrial and Mars analogue minerals. FEMS Microbiol Ecol 81(1):111–123CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rebecca A. Daly
    • 1
  • Kelly C. Wrighton
    • 1
  • Michael J. Wilkins
    • 1
  1. 1.Department of MicrobiologyThe Ohio State UniversityColumbusUSA

Personalised recommendations