Proteomic Signatures in Staphylococcus aureus

  • Susanne EngelmannEmail author
  • Stephan Fuchs
Part of the Methods in Molecular Biology book series (MIMB, volume 1841)


Despite all its apparent limitations proteome analysis based on two-dimensional protein gels combined with mass spectrometry is still the method of choice to study global protein synthesis activity in bacterial cells. Alterations in global protein synthesis play an important role during adaptation of bacteria to changing environmental conditions which are rather the role than the exception in their natural habitats. The protein synthesis pattern in response to a certain stimulus is highly specific and reflects the new challenges the bacterium has to meet. Here we present the techniques to analyze global protein synthesis in bacteria as exemplified by Staphylococcus aureus which is an important human pathogen and one main cause of nosocomial infections with severe outcome.

Key words

2D PAGE [35S]-l-methionine pulse labeling Proteomic signatures Staphylococcus aureus Expression database 



We are very grateful to our former colleagues at the Institute for Microbiology of the Greifswald University who were involved in these experiments. Furthermore, we thank the Decodon GmbH (Greifswald) for providing the Delta2D software. This work was supported by grants from the Bildungsministerium für Bildung und Forschung (InfektionsGenomik) and the Deutsche Forschungsgemeinschaft (SFB-TRR34, FOR 585, GRK840).


  1. 1.
    Hecker M, Antelmann H, Büttner K, Bernhardt J (2008) Gel-based proteomics of Gram-positive bacteria: a powerful tool to address physiological questions. Proteomics 8(23–24):4958–4975CrossRefPubMedGoogle Scholar
  2. 2.
    VanBogelen RA, Schiller EE, Thomas JD, Neidhardt FC (1999) Diagnosis of cellular states of microbial organisms using proteomics. Electrophoresis 20(11):2149–2159CrossRefPubMedGoogle Scholar
  3. 3.
    Fuchs S, Zühlke D, Pané-Farré J, Kusch H, Wolf C, Reiss S, Binh le TN, Albrecht D, Riedel K, Hecker M, Engelmann S (2013) Aureolib – a proteome signature library: towards an understanding of Staphylococcus aureus pathophysiology. PLoS One 8(8):e70669CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bandow JE, Brötz H, Leichert LI, Labischinski H, Hecker M (2003) Proteomic approach to understanding antibiotic action. Antimicrob Agents Chemother 47(3):948–955CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Brötz-Oesterhelt H, Bandow JE, Labischinski H (2005) Bacterial proteomics and its role in antibacterial drug discovery. Mass Spec Rev 24(4):549–565CrossRefGoogle Scholar
  6. 6.
    Wolf C, Hochgräfe F, Kusch H, Albrecht D, Hecker M, Engelmann S (2008) Proteomic analysis of antioxidant strategies of Staphylococcus aureus: diverse responses to different oxidants. Proteomics 8(15):3139–3153CrossRefPubMedGoogle Scholar
  7. 7.
    Reiss S, Pané-Farré J, Fuchs S, Francois P, Liebeke M, Schrenzel J, Lindequist U, Lalk M, Wolz C, Hecker M, Engelmann S (2012) Global analysis of the Staphylococcus aureus response to mupirocin. Antimic Agents Chemother 56(2):787–804CrossRefGoogle Scholar
  8. 8.
    Fuchs S, Pané-Farré J, Kohler C, Hecker M, Engelmann S (2007) Anaerobic gene expression in Staphylococcus aureus. J Bacteriol 189(11):4275–4289CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hochgräfe F, Wolf C, Fuchs S, Liebeke M, Lalk M, Engelmann S, Hecker M (2008) Nitric oxide stress induces different responses but mediates comparable protein thiol protection in Bacillus subtilis and Staphylococcus aureus. J Bacteriol 190(14):4997–5008CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fuchs S, Mehlan H, Kusch H, Teumer A, Zühlke D, Berth M, Wolf C, Dandekar T, Hecker M, Engelmann S, Bernhardt J (2010) Protecs, a comprehensive and powerful storage and analysis system for OMICS data, applied for profiling the anaerobiosis response of Staphylococcus aureus COL. Proteomics 10(16):2982–3000CrossRefPubMedGoogle Scholar
  11. 11.
    Engelmann S, Hecker M (2008) Proteomic analysis to investigate regulatory networks in Staphylococcus aureus. Methods Mol Biol 431:25–45PubMedGoogle Scholar
  12. 12.
    Eymann C, Dreisbach A, Albrecht D, Bernhardt J, Becher D, Gentner S, Tam le T, Büttner K, Buurman G, Scharf C, Venz S, Völker U, Hecker M (2004) A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4(10):2849–2876CrossRefPubMedGoogle Scholar
  13. 13.
    Cheadle C, Vawter MP, Freed WJ, Becker KG (2003) Analysis of microarray data using Z score transformation. J Mol Diagnostics 5(2):73–81CrossRefGoogle Scholar
  14. 14.
    Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. Methods Enzymol 411:134–193CrossRefPubMedGoogle Scholar
  15. 15.
    Coordinators NR (2014) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 42(Database issue):7–17Google Scholar
  16. 16.
    UniProt C (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue):D204–D212Google Scholar
  17. 17.
    Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, Kazanov MD, Riehl W, Arkin AP, Dubchak I, Rodionov DA (2013) RegPrecise 3.0—a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genomics 14:745CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205CrossRefPubMedGoogle Scholar
  19. 19.
    Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kohler C, Wolff S, Albrecht D, Fuchs S, Becher D, Büttner K, Engelmann S, Hecker M (2005) Proteome analyses of Staphylococcus aureus in growing and non-growing cells: a physiological approach. Int J Med Microbiol 295(8):547–565CrossRefPubMedGoogle Scholar
  21. 21.
    Berth M, Moser FM, Kolbe M, Bernhardt J (2007) The state of the art in the analysis of two-dimensional gel electrophoresis images. Appl Microbiol Biotechnol 76(6):1223–1243CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for MicrobiologyTechnical University BraunschweigBraunschweigGermany
  2. 2.Microbial ProteomicsHelmholtz Centre for Infection ResearchBraunschweigGermany
  3. 3.Robert Koch InstituteWernigerodeGermany

Personalised recommendations