Advertisement

Preparation of Bacterial Magnetosomes for Proteome Analysis

  • Oliver Raschdorf
  • Dirk Schüler
  • René Uebe
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1841)

Abstract

Magnetotactic bacteria form unique prokaryotic organelles, termed magnetosomes, which consist of membrane-enclosed magnetite nanoparticles. Analysis of magnetosome biogenesis has been greatly facilitated by proteomic methods. These, however, require pure, highly enriched magnetosomes. Here, we describe the purification of magnetosomes from Magnetospirillum gryphiswaldense using high pressure cell disruption, and sequential purification by magnetic enrichment and sucrose density ultracentrifugation. The resulting enriched magnetosomes can be subsequently subjected to proteomic analyses or biotechnological applications.

Key words

Prokaryotic organelles Magnetosomes Magnetite nanoparticles Magnetic separation Ultracentrifugation Biotechnological application 

Notes

Acknowledgment

We thank Florian Bonn and Dörte Becher (University of Greifswald) for help with developing membrane enrichment protocol. This work was supported by the Human Frontier Science Foundation (grant RGP0052/2012) and the Deutsche Forschungsgemeinschaft (grant Schu1080/15-1).

References

  1. 1.
    Murat D, Byrne M, Komeili A (2010) Cell biology of prokaryotic organelles. Cold Spring Harb Perspect Biol 2(10):a000422CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Uebe R, Schüler D (2016) Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol 14(10):621–637CrossRefPubMedGoogle Scholar
  3. 3.
    Heyen U, Schüler D (2003) Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microbiol Biotechnol 61(5-6):536–544CrossRefPubMedGoogle Scholar
  4. 4.
    Komeili A, Vali H, Beveridge TJ, Newman DK (2004) Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc Natl Acad Sci U S A 101(11):3839–3844CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Grünberg K, Müller EC, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 70(2):1040–1050CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Murat D, Quinlan A, Vali H, Komeili A (2010) Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci U S A 107(12):5593–5598CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Lohße A, Borg S, Raschdorf O, Kolinko I, Tompa E, Posfai M, Faivre D, Baumgartner J, Schüler D (2014) Genetic dissection of the mamAB and mms6 operons reveals a gene set essential for magnetosome biogenesis in Magnetospirillum gryphiswaldense. J Bacteriol 196(14):2658–2669CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Lohße A, Ullrich S, Katzmann E, Borg S, Wanner G, Richter M, Voigt B, Schweder T, Schüler D (2011) Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. PLoS One 6(10):e25561CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Quinlan A, Murat D, Vali H, Komeili A (2011) The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization. Mol Microbiol 80(4):1075–1087CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Amor M, Busigny V, Durand-Dubief M, Tharaud M, Ona-Nguema G, Gelabert A, Alphandery E, Menguy N, Benedetti MF, Chebbi I, Guyot F (2015) Chemical signature of magnetotactic bacteria. Proc Natl Acad Sci U S A 112(6):1699–1703CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Meriaux S, Boucher M, Marty B, Lalatonne Y, Preveral S, Motte L, Lefevre CT, Geffroy F, Lethimonnier F, Pean M, Garcia D, Adryanczyk-Perrier G, Pignol D, Ginet N (2015) Magnetosomes, biogenic magnetic nanomaterials for brain molecular imaging with 17.2 T MRI scanner. Adv Healthc Mater 4(7):1076–1083CrossRefPubMedGoogle Scholar
  12. 12.
    Alphandery E, Faure S, Seksek O, Guyot F, Chebbi I (2011) Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 5(8):6279–6296CrossRefPubMedGoogle Scholar
  13. 13.
    Alphandery E (2014) Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Front Bioeng Biotechnol 2:5PubMedCentralPubMedGoogle Scholar
  14. 14.
    Pollithy A, Romer T, Lang C, Müller FD, Helma J, Leonhardt H, Rothbauer U, Schüler D (2011) Magnetosome expression of functional camelid antibody fragments (nanobodies) in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 77(17):6165–6171CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Lang C, Schüler D (2006) Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes. J Phys Condens Mat 18(38):S2815–S2828CrossRefGoogle Scholar
  16. 16.
    Lang C, Schüler D, Faivre D (2007) Synthesis of magnetite nanoparticles for bio- and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes. Macromol Biosci 7(2):144–151CrossRefPubMedGoogle Scholar
  17. 17.
    Mann S, Moench TT, Williams RJP (1984) A high-resolution electron-microscopic investigation of bacterial magnetite – implications for crystal-growth. Proc R Soc Ser B Biol 221(1225):385–393CrossRefGoogle Scholar
  18. 18.
    Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170(2):834–841CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Grünberg K, Wawer C, Tebo BM, Schüler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67(10):4573–4582CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Matsunaga T, Nemoto M, Arakari A, Tanaka M (2009) Proteomic analysis of irregular, bullet-shaped magnetosomes in the sulphate-reducing magnetotactic bacterium Desulfovibrio magneticus RS-1. Proteomics 9(12):3341–3352CrossRefPubMedGoogle Scholar
  21. 21.
    Tanaka M, Okamura Y, Arakaki A, Tanaka T, Takeyama H, Matsunaga T (2006) Origin of magnetosome membrane: proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics 6(19):5234–5247CrossRefPubMedGoogle Scholar
  22. 22.
    James GT (1978) Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal Biochem 86(2):574–579CrossRefPubMedGoogle Scholar
  23. 23.
    Taoka A, Asada R, Sasaki H, Anzawa K, Wu LF, Fukumori Y (2006) Spatial localizations of Mam22 and Mam12 in the magnetosomes of Magnetospirillum magnetotacticum. J Bacteriol 188(11):3805–3812CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ludwig Maximilian UniversityMunichGermany
  2. 2.Department of MicrobiologyUniversity of BayreuthBayreuthGermany

Personalised recommendations