Advertisement

Centrifugation-Based Enrichment of Bacterial Cell Populations for Metaproteomic Studies on Bacteria–Invertebrate Symbioses

  • Tjorven Hinzke
  • Manuel Kleiner
  • Stephanie Markert
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1841)

Abstract

Owing to high sample complexity, metaproteomic investigations on bacteria–animal symbioses with two or more uncultured partners can be challenging. A selective isolation or enrichment of distinct (sub-)populations within those consortia can solve this problem. Subsequent discrete proteomic analyses benefit from increased sample purity and higher proteome coverage for each of the individual organisms. Here, we describe centrifugation-based methods that allow for a separation of the host and its bacterial symbiont population(s), or even for an enrichment of distinct symbiotic cell cycle stages in the deep-sea mussels Bathymodiolus azoricus and B. thermophilus, the gutless oligochaete Olavius algarvensis and the deep-sea tube worm Riftia pachyptila, respectively.

Key words

Bacteria–invertebrate symbiosis Metaproteome Differential pelleting Rate-zonal density gradient centrifugation Isopycnic density gradient centrifugation Percoll® HistoDenz™ 

Notes

Acknowledgments

We thank Horst Felbeck for valuable help with sample preparation, Ruby Ponnudurai for data collection and analysis, and Thomas Schweder for helpful input. This work was supported by the Deutsche Forschungsgemeinschaft (DFG grant MA 6346/2-1).

References

  1. 1.
    Kleiner M, Wentrup C, Lott C et al (2012) Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proc Natl Acad Sci U S A 109:E1173–E1182CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Bright M, Sorgo A (2003) Ultrastructural reinvestigation of the trophosome in adults of Riftia pachyptila (Annelida, Siboglinidae). Invertebr Biol 122:345–366Google Scholar
  3. 3.
    Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3:reviews0003.1–reviews0003.8CrossRefGoogle Scholar
  4. 4.
    Hinton R, Dobrota M (1976) Density gradient centrifugation. Elsevier/North-Holland Biomedical Press, AmsterdamGoogle Scholar
  5. 5.
    Sharpe PT (1988) Chapter 3: Centrifugation. In: Methods of cell separation. Elsevier Science Publishers B.V. (Biomedical Division), AmsterdamGoogle Scholar
  6. 6.
    Graham J (2001) Biological centrifugation. BIOS Scientific Publishers Limited, OxfordGoogle Scholar
  7. 7.
    Hinton RH, Mullock BM (1997) Isolation of subcellular fractions. In: Graham JM, Rickwood D (eds) Subcellular fractionation: a practical approach. The practical approach series. Oxford University Press, Oxford, pp 31–69Google Scholar
  8. 8.
    Spragg SP, Steensgaard J (1992) Theoretical aspects of practical centrifugation. In: Rickwood D (ed) Preparative centrifugation: a practical approach. The practical approach series. Oxford University Press, Oxford, pp 1–42Google Scholar
  9. 9.
    Dobrota M, Hinton R (1992) Conditions for density gradient separations. In: Rickwood D (ed) Preparative centrifugation: a practical approach. The practical approach series. Oxford University Press, Oxford, pp 77–142Google Scholar
  10. 10.
    Evans WH (1992) Isolation and characterization of membranes and cell organelles. In: Rickwood D (ed) Preparative centrifugation: a practical approach. The practical approach series. Oxford University Press, Oxford, pp 233–270Google Scholar
  11. 11.
    Brakke MK (1951) Density gradient centrifugation: a new separation technique. J Am Chem Soc 73:1847–1848CrossRefGoogle Scholar
  12. 12.
    Pertoft H (2000) Fractionation of cells and subcellular particles with Percoll. J Biochem Biophys Methods 44:1–30CrossRefGoogle Scholar
  13. 13.
    Distel DL, Felbeck H (1988) Pathways of inorganic carbon fixation in the endosymbiont-bearing lucinid clam Lucinoma aequizonata. Part 1. Purification and characterization of the endosymbiotic bacteria. J Exp Zool 247:1–10CrossRefGoogle Scholar
  14. 14.
    Markert S, Arndt C, Felbeck H et al (2007) Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science 315:247–250.  https://doi.org/10.1126/science.1132913CrossRefGoogle Scholar
  15. 15.
    Markert S, Gardebrecht A, Felbeck H et al (2011) Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont. Proteomics 11:3106–3117CrossRefGoogle Scholar
  16. 16.
    Ponnudurai R, Kleiner M, Sayavedra L et al (2017) Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. ISME J 11:463–477CrossRefGoogle Scholar
  17. 17.
    Graham JM (1997) Homogenization of tissues and cells. In: Graham JM, Rickwood D (eds) Subcellular fractionation: a practical approach. The practical approach series. Oxford University Press, Oxford, pp 1–29Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tjorven Hinzke
    • 1
  • Manuel Kleiner
    • 2
  • Stephanie Markert
    • 1
    • 3
  1. 1.Institute of Marine BiotechnologyGreifswaldGermany
  2. 2.Department of Plant & Microbial BiologyNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Pharmaceutical Biotechnology, Institute of PharmacyUniversity of GreifswaldGreifswaldGermany

Personalised recommendations