Phosphoproteomics in Microbiology: Protocols for Studying Streptomyces coelicolor Differentiation

  • Angel MantecaEmail author
  • Beatriz Rioseras
  • Adelina Rogowska-Wrzesinska
  • Ole N. Jensen
Part of the Methods in Molecular Biology book series (MIMB, volume 1841)


The extension and biological role of Ser/Thr/Tyr phosphorylation in prokaryotes have been only scarcely studied. In this chapter, we describe the state of the art of microbial phosphoproteomics, focusing on protocols used for studying the phosphoproteome of Streptomyces coelicolor, one of the bacteria encoding the largest number of eukaryote-like Ser/Thr/Tyr kinases.

Key words

Streptomyces Phosphoproteomics Differentiation Sporulation LC-MS/MS 



We wish to thank the European Research Council (ERC Starting Grant; Strp-differentiation 280304), the Spanish “Ministerio de Economía y Competitividad” (MINECO; BIO2015-65709-R), and the VILLUM Foundation (VILLUM Center for Bioanalytical Sciences at University of Southern Denmark) for financial support.


  1. 1.
    Pawson T, Scott JD (2005) Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci 30(6):286–290CrossRefPubMedGoogle Scholar
  2. 2.
    Hoch JA (2000) Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3(2):165–170CrossRefPubMedGoogle Scholar
  3. 3.
    Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203(1):11–21CrossRefPubMedGoogle Scholar
  4. 4.
    Kleinnijenhuis AJ, Kjeldsen F, Kallipolitis B, Haselmann KF, Jensen ON (2007) Analysis of histidine phosphorylation using tandem MS and ion-electron reactions. Anal Chem 79(19):7450–7456CrossRefPubMedGoogle Scholar
  5. 5.
    Macek B, Gnad F, Soufi B, Kumar C, Olsen JV, Mijakovic I, Mann M (2008) Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol Cell Proteomics 7(2):299–307CrossRefPubMedGoogle Scholar
  6. 6.
    Soares NC, Spat P, Krug K, Macek B (2013) Global dynamics of the Escherichia coli proteome and phosphoproteome during growth in minimal medium. J Proteome Res 12(6):2611–2621CrossRefPubMedGoogle Scholar
  7. 7.
    Sun X, Ge F, Xiao CL, Yin XF, Ge R, Zhang LH, He QY (2010) Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. J Proteome Res 9(1):275–282CrossRefPubMedGoogle Scholar
  8. 8.
    Lin MH, Hsu TL, Lin SY, Pan YJ, Jan JT, Wang JT, Khoo KH, Wu SH (2009) Phosphoproteomics of Klebsiella pneumoniae NTUH-K2044 reveals a tight link between tyrosine phosphorylation and virulence. Mol Cell Proteomics 8(12):2613–2623CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Soufi B, Gnad F, Jensen PR, Petranovic D, Mann M, Mijakovic I, Macek B (2008) The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins. Proteomics 8(17):3486–3493CrossRefPubMedGoogle Scholar
  10. 10.
    Ravichandran A, Sugiyama N, Tomita M, Swarup S, Ishihama Y (2009) Ser/Thr/Tyr phosphoproteome analysis of pathogenic and non-pathogenic Pseudomonas species. Proteomics 9(10):2764–2775CrossRefPubMedGoogle Scholar
  11. 11.
    Macek B, Mijakovic I, Olsen JV, Gnad F, Kumar C, Jensen PR, Mann M (2007) The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol Cell Proteomics 6(4):697–707CrossRefPubMedGoogle Scholar
  12. 12.
    Aivaliotis M, Macek B, Gnad F, Reichelt P, Mann M, Oesterhelt D (2009) Ser/Thr/Tyr protein phosphorylation in the archaeon Halobacterium salinarum—a representative of the third domain of life. PLoS One 4(3):e4777CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bai X, Ji Z (2012) Phosphoproteomic investigation of a solvent producing bacterium Clostridium acetobutylicum. Appl Microbiol Biotechnol 95(1):201–211CrossRefPubMedGoogle Scholar
  14. 14.
    Parker JL, Jones AM, Serazetdinova L, Saalbach G, Bibb MJ, Naldrett MJ (2010) Analysis of the phosphoproteome of the multicellular bacterium Streptomyces coelicolor A3(2) by protein/peptide fractionation, phosphopeptide enrichment and high-accuracy mass spectrometry. Proteomics 10(13):2486–2497CrossRefPubMedGoogle Scholar
  15. 15.
    Manteca A, Ye J, Sanchez J, Jensen ON (2011) Phosphoproteome analysis of Streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation. J Proteome Res 10(12):5481–5492CrossRefPubMedGoogle Scholar
  16. 16.
    Prisic S, Dankwa S, Schwartz D, Chou MF, Locasale JW, Kang CM, Bemis G, Church GM, Steen H, Husson RN (2010) Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proc Natl Acad Sci U S A 107(16):7521–7526CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Soares NC, Spat P, Mendez JA, Nakedi K, Aranda J, Bou G (2014) Ser/Thr/Tyr phosphoproteome characterization of Acinetobacter baumannii: comparison between a reference strain and a highly invasive multidrug-resistant clinical isolate. J Proteome 102:113–124CrossRefGoogle Scholar
  18. 18.
    Misra SK, Milohanic E, Ake F, Mijakovic I, Deutscher J, Monnet V, Henry C (2011) Analysis of the serine/threonine/tyrosine phosphoproteome of the pathogenic bacterium Listeria monocytogenes reveals phosphorylated proteins related to virulence. Proteomics 11(21):4155–4165CrossRefPubMedGoogle Scholar
  19. 19.
    Hu CW, Lin MH, Huang HC, Ku WC, Yi TH, Tsai CF, Chen YJ, Sugiyama N, Ishihama Y, Juan HF, Wu SH (2012) Phosphoproteomic analysis of Rhodopseudomonas palustris reveals the role of pyruvate phosphate dikinase phosphorylation in lipid production. J Proteome Res 11(11):5362–5375CrossRefGoogle Scholar
  20. 20.
    Takahata Y, Inoue M, Kim K, Iio Y, Miyamoto M, Masui R, Ishihama Y, Kuramitsu S (2012) Close proximity of phosphorylation sites to ligand in the phosphoproteome of the extreme thermophile Thermus thermophilus HB8. Proteomics 12(9):1414–1430CrossRefPubMedGoogle Scholar
  21. 21.
    Ge R, Sun X, Xiao C, Yin X, Shan W, Chen Z, He QY (2011) Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins. Proteomics 11(8):1449–1461CrossRefPubMedGoogle Scholar
  22. 22.
    Bäsell K, Otto A, Junker S, Zühlke D, Rappen GM, Schmidt S, Hentschker C, Macek B, Ohlsen K, Hecker M, Becher D (2014) The phosphoproteome and its physiological dynamics in Staphylococcus aureus. Int J Med Microbiol 304(2):121–132CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang X, Ye J, Jensen ON, Roepstorff P (2007) Highly efficient phosphopeptide enrichment by calcium phosphate precipitation combined with subsequent IMAC enrichment. Mol Cell Proteomics 6(11):2032–2042CrossRefPubMedGoogle Scholar
  24. 24.
    Omura S (1992) The expanded horizon for microbial metabolites—a review. Gene 115(1–2):141–149CrossRefPubMedGoogle Scholar
  25. 25.
    Tamaoki T, Nakano H (1990) Potent and specific inhibitors of protein kinase C of microbial origin. Biotechnology (N Y) 8(8):732–735Google Scholar
  26. 26.
    Umezawa K (1997) Induction of cellular differentiation and apoptosis by signal transduction inhibitors. Adv Enzym Regul 37:393–401CrossRefGoogle Scholar
  27. 27.
    Katz L, Baltz RH (2016) Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 43:155–176CrossRefPubMedGoogle Scholar
  28. 28.
    Yague P, Lopez-Garcia MT, Rioseras B, Sanchez J, Manteca A (2013) Pre-sporulation stages of Streptomyces differentiation: state-of-the-art and future perspectives. FEMS Microbiol Lett 342(2):79–88CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Perez J, Castaneda-Garcia A, Jenke-Kodama H, Muller R, Munoz-Dorado J (2008) Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome. Proc Natl Acad Sci U S A 105(41):15950–15955CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417(6885):141–147CrossRefPubMedGoogle Scholar
  31. 31.
    Novella IS, Barbes C, Sanchez J (1992) Sporulation of Streptomyces antibioticus ETHZ 7451 in submerged culture. Can J Microbiol 38(8):769–773CrossRefPubMedGoogle Scholar
  32. 32.
    Sharma K, D'Souza RC, Tyanova S, Schaab C, Wisniewski JR, Cox J, Mann M (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8(5):1583–1594CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Angel Manteca
    • 1
    Email author
  • Beatriz Rioseras
    • 1
  • Adelina Rogowska-Wrzesinska
    • 2
  • Ole N. Jensen
    • 2
  1. 1.Area de Microbiologia, Departamento de Biologia Funcional, Facultad de Medicina, IUOPAUniversidad de OviedoOviedoSpain
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations