Phosphopeptide Enrichment from Bacterial Samples Utilizing Titanium Oxide Affinity Chromatography

  • Boumediene Soufi
  • Christoph Täumer
  • Maja Semanjski
  • Boris MacekEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1841)


Mass spectrometry (MS)-based proteomics detected hundreds of phosphorylation sites on serine, threonine and tyrosine in numerous bacterial proteins, firmly establishing the presence and importance of this posttranslational modification in prokaryotes. Recent biological follow up of these results revealed that vital processes in bacterial cell, such as cell division, differentiation, spore germination and persistence, are regulated by protein phosphorylation, raising the need to study this modification on a global scale under additional physiological conditions. Due to low abundance and low stoichiometric levels of protein phosphorylation, initial protocols for phosphopeptide enrichment and analysis required relatively high amounts of starting material, extensive fractionation and MS measurement time. Here we present a protocol for phosphopeptide enrichment and detection based on TiO2 chromatography and high resolution MS that enables in-depth detection and quantification of phosphorylation sites from significantly lower amounts of starting material and in a fraction of MS measurement time.

Key words

Phosphoproteome Phosphorylation TiO2 chromatography Mass spectrometry Phosphopeptide enrichment 



We thank Dr. Olaf Voolstra for critical reading of the manuscript. Our work is supported by the SFB766 of the Deutsche Forschungsgemeinschaft and PRIME-XS consortium.


  1. 1.
    Mitrophanov AY, Groisman EA (2008) Signal integration in bacterial two-component regulatory systems. Genes Dev 22(19):2601–2611CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Deutscher J, Saier MH Jr (2005) Ser/Thr/Tyr protein phosphorylation in bacteria - for long time neglected, now well established. J Mol Microbiol Biotechnol 9(3–4):125–131CrossRefPubMedGoogle Scholar
  3. 3.
    Dworkin J (2015) Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr Opin Microbiol 24(0):47–52CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wehenkel A, Bellinzoni M, Grana M, Duran R, Villarino A, Fernandez P, Andre-Leroux G, England P, Takiff H, Cervenansky C, Cole ST, Alzari PM (2008) Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential. Biochim Biophys Acta 1784(1):193–202CrossRefPubMedGoogle Scholar
  5. 5.
    Kannan N, Taylor SS, Zhai Y, Venter JC, Manning G (2007) Structural and functional diversity of the microbial kinome. PLoS Biol 5(3):e17CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Petranovic D, Michelsen O, Zahradka K, Silva C, Petranovic M, Jensen PR, Mijakovic I (2007) Bacillus subtilis strain deficient for the protein-tyrosine kinase PtkA exhibits impaired DNA replication. Mol Microbiol 63(6):1797–1805CrossRefPubMedGoogle Scholar
  7. 7.
    Shah IM, Laaberki MH, Popham DL, Dworkin J (2008) A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135(3):486–496CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Klein G, Dartigalongue C, Raina S (2003) Phosphorylation-mediated regulation of heat shock response in Escherichia coli. Mol Microbiol 48(1):269–285CrossRefPubMedGoogle Scholar
  9. 9.
    Lacour S, Bechet E, Cozzone AJ, Mijakovic I, Grangeasse C (2008) Tyrosine phosphorylation of the UDP-glucose dehydrogenase of Escherichia coli is at the crossroads of colanic acid synthesis and polymyxin resistance. PLoS One 3(8):e3053CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Molle V, Kremer L (2010) Division and cell envelope regulation by Ser/Thr phosphorylation: mycobacterium shows the way. Mol Microbiol 75(5):1064–1077CrossRefPubMedGoogle Scholar
  11. 11.
    Fleurie A, Lesterlin C, Manuse S, Zhao C, Cluzel C, Lavergne JP, Franz-Wachtel M, Macek B, Combet C, Kuru E, VanNieuwenhze MS, Brun YV, Sherratt D, Grangeasse C (2014) MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature 516(7530):259–262CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fleurie A, Manuse S, Zhao C, Campo N, Cluzel C, Lavergne JP, Freton C, Combet C, Guiral S, Soufi B, Macek B, Kuru E, VanNieuwenhze MS, Brun YV, Di Guilmi AM, Claverys JP, Galinier A, Grangeasse C (2014) Interplay of the serine/threonine-kinase StkP and the paralogs DivIVA and GpsB in pneumococcal cell elongation and division. PLoS Genet 10(4):e1004275CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Morona JK, Miller DC, Morona R, Paton JC (2004) The effect that mutations in the conserved capsular polysaccharide biosynthesis genes cpsA, cpsB, and cpsD have on virulence of Streptococcus pneumoniae. J Infect Dis 189(10):1905–1913CrossRefPubMedGoogle Scholar
  14. 14.
    Basell K, Otto A, Junker S, Zuhlke D, Rappen GM, Schmidt S, Hentschker C, Macek B, Ohlsen K, Hecker M, Becher D (2014) The phosphoproteome and its physiological dynamics in Staphylococcus aureus. Int J Med Microbiol 304(2):121–132CrossRefPubMedGoogle Scholar
  15. 15.
    Schumacher MA, Piro KM, Xu W, Hansen S, Lewis K, Brennan RG (2009) Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 323(5912):396–401CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Germain E, Castro-Roa D, Zenkin N, Gerdes K (2013) Molecular mechanism of bacterial persistence by HipA. Mol Cell 52(2):248–254CrossRefPubMedGoogle Scholar
  17. 17.
    Lapek JD, Tombline G, Friedman AE (2010) Mass spectrometry detection of histidine phosphorylation on NM23-H1. J Proteome Res 10(2):751–755CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zu XL, Besant PG, Imhof A, Attwood PV (2007) Mass spectrometric analysis of protein histidine phosphorylation. Amino Acids 32(3):347–357CrossRefPubMedGoogle Scholar
  19. 19.
    Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362CrossRefPubMedGoogle Scholar
  20. 20.
    Manza LL, Stamer SL, Ham AJ, Codreanu SG, Liebler DC (2005) Sample preparation and digestion for proteomic analyses using spin filters. Proteomics 5(7):1742–1745CrossRefPubMedGoogle Scholar
  21. 21.
    Soufi B, Macek B (2015) Global analysis of bacterial membrane proteins and their modifications. Int J Med Microbiol 305(2):203–208CrossRefPubMedGoogle Scholar
  22. 22.
    Soufi B, Macek B (2014) Stable isotope labeling by amino acids applied to bacterial cell culture. Methods Mol Biol 1188:9–22CrossRefPubMedGoogle Scholar
  23. 23.
    Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49:199–221CrossRefPubMedGoogle Scholar
  24. 24.
    Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71(14):2883–2892CrossRefPubMedGoogle Scholar
  25. 25.
    Pinkse MWH, Uitto PM, Hilhorst MJ, Ooms B, Heck AJR (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76(14):3935–3943CrossRefPubMedGoogle Scholar
  26. 26.
    Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJD (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4(7):873–886CrossRefPubMedGoogle Scholar
  27. 27.
    Blagoev B, Ong SE, Kratchmarova I, Mann M (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22(9):1139–1145CrossRefPubMedGoogle Scholar
  28. 28.
    Schmelzle K, Kane S, Gridley S, Lienhard GE, White FM (2006) Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes 55(8):2171–2179CrossRefPubMedGoogle Scholar
  29. 29.
    Hansen AM, Chaerkady R, Sharma J, Diaz-Mejia JJ, Tyagi N, Renuse S, Jacob HK, Pinto SM, Sahasrabuddhe NA, Kim MS, Delanghe B, Srinivasan N, Emili A, Kaper JB, Pandey A (2013) The Escherichia coli phosphotyrosine proteome relates to core pathways and virulence. PLoS Pathog 9(6):e1003403CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li JX, Cohn MA, Cantley LC, Gygi SP (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101(33):12130–12135CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kelstrup CD, Jersie-Christensen RR, Batth TS, Arrey TN, Kuehn A, Kellmann M, Olsen JV (2014) Rapid and deep proteomes by faster sequencing on a benchtop quadrupole ultra-high-field Orbitrap mass spectrometer. J Proteome Res 13(12):6187–6195CrossRefPubMedGoogle Scholar
  32. 32.
    Ishihama Y, Rappsilber J, Andersen JS, Mann M (2002) Microcolumns with self-assembled particle frits for proteomics. J Chromatogr A 979(1–2):233–239CrossRefPubMedGoogle Scholar
  33. 33.
    Hillenkamp F, Karas M, Beavis RC, Chait BT (1991) Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 63(24):1193A–1203ACrossRefPubMedGoogle Scholar
  34. 34.
    Ahmed FE (2008) Utility of mass spectrometry for proteome analysis: part I. Conceptual and experimental approaches. Expert Rev Proteomics 5(6):841–864CrossRefPubMedGoogle Scholar
  35. 35.
    Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4(12):2010–2021CrossRefPubMedGoogle Scholar
  36. 36.
    Schroeder MJ, Shabanowitz J, Schwartz JC, Hunt DF, Coon JJ (2004) A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem 76(13):3590–3598CrossRefPubMedGoogle Scholar
  37. 37.
    Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4(9):709–712CrossRefPubMedGoogle Scholar
  38. 38.
    Chi A, Huttenhower C, Geer LY, Coon JJ, Syka JE, Bai DL, Shabanowitz J, Burke DJ, Troyanskaya OG, Hunt DF (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci U S A 104(7):2193–2198CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Good DM, Wirtala M, McAlister GC, Coon JJ (2007) Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 6(11):1942–1951CrossRefPubMedGoogle Scholar
  40. 40.
    Frese CK, Altelaar AF, Hennrich ML, Nolting D, Zeller M, Griep-Raming J, Heck AJ, Mohammed S (2011) Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. J Proteome Res 10(5):2377–2388CrossRefPubMedGoogle Scholar
  41. 41.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372CrossRefPubMedGoogle Scholar
  42. 42.
    The Universal Protein Resource (UniProt) (2009) Nucleic Acids Res 37(Database issue):D169–D174Google Scholar
  43. 43.
    Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567CrossRefGoogle Scholar
  44. 44.
    Yates JR 3rd, Eng JK, McCormack AL, Schieltz D (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67(8):1426–1436CrossRefPubMedGoogle Scholar
  45. 45.
    Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH (2004) Open mass spectrometry search algorithm. J Proteome Res 3(5):958–964CrossRefPubMedGoogle Scholar
  46. 46.
    Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4(3):207–214CrossRefPubMedGoogle Scholar
  47. 47.
    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648CrossRefPubMedGoogle Scholar
  48. 48.
    Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24(10):1285–1292CrossRefPubMedGoogle Scholar
  49. 49.
    Ravikumar V, Macek B, Mijakovic I (2016) Resources for assignment of phosphorylation sites on peptides and proteins. Methods Mol Biol 1355:293–306CrossRefPubMedGoogle Scholar
  50. 50.
    Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, Olsen JV, Mann M (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4(5):698–705CrossRefPubMedGoogle Scholar
  51. 51.
    Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805CrossRefPubMedGoogle Scholar
  52. 52.
    Tyanova S, Mann M, Cox J (2014) MaxQuant for in-depth analysis of large SILAC datasets. In: Warscheid B (ed) Stable isotope labeling by amino acids in cell culture (SILAC), Methods in molecular biology, vol 1188. Springer, New York, pp 351–364Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Boumediene Soufi
    • 1
  • Christoph Täumer
    • 1
  • Maja Semanjski
    • 1
  • Boris Macek
    • 1
    Email author
  1. 1.Proteome Center TübingenUniversity of TübingenTübingenGermany

Personalised recommendations