In vivo Proteomics Approaches for the Analysis of Bacterial Adaptation Reactions in Host–Pathogen Settings

  • Henrike Pförtner
  • Maren Depke
  • Kristin Surmann
  • Frank Schmidt
  • Uwe VölkerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1841)


Proteome profiling of bacteria internalized by host cells is still a challenging task, due to low amounts of bacterial proteins in host–pathogen settings and the high amounts of contaminating host proteins. Here, we describe a workflow for the enrichment of intracellular bacteria by fluorescence activated cell sorting which in combination with highly sensitive LC-MS/MS allows monitoring of about 1200 proteins from 2 to 4 × 106 internalized bacterial cells as starting material.

Key words

Host–pathogen interaction Staphylococcus aureus Intracellular bacteria Epithelial cells Internalization Bacterial cell sorting Mass spectrometry Proteomics 



This work was supported by the German Research Foundation Grant SFB/TR34.


  1. 1.
    Scott CC, Botelho RJ, Grinstein S (2003) Phagosome maturation: a few bugs in the system. J Membr Biol 193:137–152CrossRefPubMedGoogle Scholar
  2. 2.
    Norrby S, Nord C, Finch R (2005) Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect Dis 5:115–119CrossRefPubMedGoogle Scholar
  3. 3.
    Cash P (2008) Proteomics of bacterial pathogens. Expert Opin Drug Discov 3:461–473CrossRefPubMedGoogle Scholar
  4. 4.
    Bumann D (2010) Pathogen proteomes during infection: a basis for infection research and novel control strategies. J Proteome 73:2267–2276CrossRefGoogle Scholar
  5. 5.
    Wertheim HFL, Melles DC, Vos MC et al (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5:751–762CrossRefPubMedGoogle Scholar
  6. 6.
    Garzoni C, Kelley WL (2009) Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol 17:59–65CrossRefPubMedGoogle Scholar
  7. 7.
    Sendi P, Proctor R (2009) Staphylococcus aureus as an intracellular pathogen: the role of small colony variants. Trends Microbiol 17:54–58CrossRefPubMedGoogle Scholar
  8. 8.
    Pförtner H, Burian MS, Michalik S et al (2014) Activation of the alternative sigma factor SigB of Staphylococcus aureus following internalization by epithelial cells–an in vivo proteomics perspective. Int J Med Microbiol 304:177–187CrossRefPubMedGoogle Scholar
  9. 9.
    Keller A, Eng J, Zhang N et al (2005) A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1:2005.0017CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Deutsch EW, Mendoza L, Shteynberg D et al (2010) A guided tour of the trans-proteomic pipeline. Proteomics 10:1150–1159CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Eng JK, Jahan T, Hoopmann MR (2013) Comet: an open-source MS/MS sequence database search tool. Proteomics 13:22–24CrossRefPubMedGoogle Scholar
  12. 12.
    MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Becker D, Selbach M, Rollenhagen C et al (2006) Robust salmonella metabolism limits possibilities for new antimicrobials. Nature 440:303–307CrossRefPubMedGoogle Scholar
  14. 14.
    Schmidt F, Scharf SS, Hildebrandt P et al (2010) Time-resolved quantitative proteome profiling of host-pathogen interactions: the response of Staphylococcus aureus RN1HG to internalisation by human airway epithelial cells. Proteomics 10:2801–2811CrossRefPubMedGoogle Scholar
  15. 15.
    Surmann K, Michalik S, Hildebrandt P et al (2014) Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells. Front Microbiol 5:392CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kessner D, Chambers M, Burke R et al (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24:2534–2536CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chambers M, Maclean B, Burke R (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Perkins D, Pappin D, Creasy D et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567CrossRefPubMedGoogle Scholar
  19. 19.
    Eng JK, McCormack L, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spec 5:976–989CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Henrike Pförtner
    • 1
  • Maren Depke
    • 1
  • Kristin Surmann
    • 1
  • Frank Schmidt
    • 2
  • Uwe Völker
    • 2
    Email author
  1. 1.Interfaculty Institute for Genetics and Functional GenomicsUniversity Medicine GreifswaldGreifswaldGermany
  2. 2.Interfaculty Institute for Genetics and Functional GenomicsUniversity Medicine GreifswaldGreifswaldGermany

Personalised recommendations