Advertisement

Chemoenzymatic Synthesis of Nitrogen Polymers with Biomedical Applications Catalyzed by Lipases

  • Alicia BaldessariEmail author
  • Guadalupe García Liñares
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1835)

Abstract

The application of Candida antarctica lipase B as catalyst in the synthesis of two examples of nitrogen polymers is described. Firstly, we report a novel linear polyamidoamine oligomer, obtained by polymerization of ethyl acrylate and N-methyl-1,3-diaminopropane, catalyzed by Candida antarctica lipase B immobilized on polypropylene. The second part of the chapter describes an efficient route for the synthesis of a novel β-peptoid oligomer with hydroxyalkyl pendant groups in the nitrogen atom, through the polymerization of ethyl N-(2-hydroxyethyl)-β-alaninate catalyzed by Candida antarctica lipase B physically adsorbed within a macroporous poly(methyl methacrylate-co-butyl methacrylate) resin. Moreover, two derivatives of the β-peptoid oligomer were prepared: by acetylation and by grafting polycaprolactone. This last process was performed through ring-opening polymerization of caprolactone from the β-peptoid pendant hydroxyl groups and afforded a brush copolymer. The products were blended with polycaprolactone to make films by solvent casting. The inclusion of the acyl derivatives of the β-peptoid to polycaprolactone affected the morphology of the film yielding micro- and nanostructured patterns. The obtained products showed biomedical applications.

Key words

Nitrogen polymers Lipases Aza-Michael addition and aminolysis reactions Polyamidoamine Poly[N-(2-hydroxyethyl)-β-propylamide-g-polycaprolactone] 

References

  1. 1.
    Shoda S, Kobayashi A, Kobayashi S (2016) Chapter 11. Production of polymers by white biotechnology. In: White biotechnology for sustainable chemistry. The Royal Society of Chemistry, London, pp 274–309.  https://doi.org/10.1039/9781782624080-00274CrossRefGoogle Scholar
  2. 2.
    Shoda S-i, Uyama H, Kadokawa J-i, Kimura S, Kobayashi S (2016) Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev 116(4):2307–2413.  https://doi.org/10.1021/acs.chemrev.5b00472CrossRefPubMedGoogle Scholar
  3. 3.
    Pellis A, Herrero Acero E, Gardossi L, Ferrario V, Guebitz GM (2016) Renewable building blocks for sustainable polyesters: new biotechnological routes for greener plastics. Polym Int 65(8):861–871.  https://doi.org/10.1002/pi.5087CrossRefGoogle Scholar
  4. 4.
    Duchiron SW, Pollet E, Givry S, Avérous L (2017) Enzymatic synthesis of poly(ε-caprolactone-co-ε-thiocaprolactone). Eur Polym J 87:147–158.  https://doi.org/10.1016/j.eurpolymj.2016.12.024CrossRefGoogle Scholar
  5. 5.
    Kobayashi S (2009) Recent developments in lipase-catalyzed synthesis of polyesters. Macromol Rapid Commun 30(4–5):237–266.  https://doi.org/10.1002/marc.200800690CrossRefPubMedGoogle Scholar
  6. 6.
    Garcia Linares G, Baldessari A (2013) Lipases as efficient catalysts in the synthesis of monomers and polymers with biomedical applications. Curr Org Chem 17(7):719–743CrossRefGoogle Scholar
  7. 7.
    Bi Y, Zhou H, Jia H, Wei P (2017) Polydopamine-mediated preparation of an enzyme-immobilized microreactor for the rapid production of wax ester. RSC Adv 7(20):12283–12291CrossRefGoogle Scholar
  8. 8.
    Poulhès F, Mouysset D, Gil G, Bertrand MP, Gastaldi S (2013) Speeding-up enzyme-catalyzed synthesis of polyamides using ω-amino-α-alkoxy-acetate as monomer. Polymer 54(14):3467–3471CrossRefGoogle Scholar
  9. 9.
    Corici L, Pellis A, Ferrario V, Ebert C, Cantone S, Gardossi L (2015) Understanding potentials and restrictions of solvent-free enzymatic polycondensation of Itaconic acid: an experimental and computational analysis. Adv Synth Catal 357(8):1763–1774.  https://doi.org/10.1002/adsc.201500182CrossRefGoogle Scholar
  10. 10.
    Rustoy EM, Sato Y, Nonami H, Erra-Balsells R, Baldessari A (2007) Lipase-catalyzed synthesis and characterization of copolymers from ethyl acrylate as the only monomer starting material. Polymer 48(6):1517–1525CrossRefGoogle Scholar
  11. 11.
    Monsalve LN, Kaniz Fatema M, Nonami H, Erra-Balsells R, Baldessari A (2010) Lipase-catalyzed synthesis and characterization of a novel linear polyamidoamine oligomer. Polymer 51(14):2998–3005.  https://doi.org/10.1016/j.polymer.2010.04.071CrossRefGoogle Scholar
  12. 12.
    Kadokawa JI, Kobayashi S (2010) Polymer synthesis by enzymatic catalysis. Curr Opin Chem Biol 14(2):145–153.  https://doi.org/10.1016/j.cbpa.2009.11.020CrossRefPubMedGoogle Scholar
  13. 13.
    Chanquia SN, Boscaro N, Alché L, Baldessari A, Liñares GG (2017) An efficient lipase-catalyzed synthesis of fatty acid derivatives of vanillylamine with Antiherpetic activity in acyclovir-resistant strains. ChemistrySelect 2(4):1537–1543CrossRefGoogle Scholar
  14. 14.
    García Liñares G, Antonela Zígolo M, Simonetti L, Longhi SA, Baldessari A (2015) Enzymatic synthesis of bile acid derivatives and biological evaluation against Trypanosoma cruzi. Bioorg Med Chem 23(15):4804–4814.  https://doi.org/10.1016/j.bmc.2015.05.035CrossRefPubMedGoogle Scholar
  15. 15.
    López-Iglesias M, Gotor-Fernández V (2015) Recent advances in biocatalytic promiscuity: hydrolase-catalyzed reactions for nonconventional transformations. Chem Rec 15(4):743–759.  https://doi.org/10.1002/tcr.201500008CrossRefPubMedGoogle Scholar
  16. 16.
    García Liñares G, Arroyo Mañez P, Baldessari A (2014) Lipase-catalyzed synthesis of substituted phenylacetamides: Hammett analysis and computational study of the enzymatic aminolysis. Eur J Org Chem 2014(29):6439–6450.  https://doi.org/10.1002/ejoc.201402749CrossRefGoogle Scholar
  17. 17.
    Monsalve LN, Petroselli G, Erra-Ballsells R, Vázquez A, Baldessari A (2014) Chemoenzymatic synthesis of novel N-(2-hydroxyethyl)-β-peptoid oligomer derivatives and application to porous polycaprolactone films. Polym Int 63(8):1523–1530.  https://doi.org/10.1002/pi.4660CrossRefGoogle Scholar
  18. 18.
    Kurtoglu YE, Mishra MK, Kannan S, Kannan RM (2010) Drug release characteristics of PAMAM dendrimer–drug conjugates with different linkers. Int J Pharm 384(1–2):189–194.  https://doi.org/10.1016/j.ijpharm.2009.10.017CrossRefPubMedGoogle Scholar
  19. 19.
    Ranucci E, Spagnoli G, Ferruti P, Sgouras D, Duncan R (1991) Poly(Amidoamine)s with potential as drug carriers: degradation and cellular toxicity. J Biomater Sci Polym Ed 2(4):303–315.  https://doi.org/10.1163/156856291X00197CrossRefPubMedGoogle Scholar
  20. 20.
    Khayat Z, Griffiths PC, Grillo I, Heenan RK, King SM, Duncan R (2006) Characterising the size and shape of polyamidoamines in solution as a function of pH using neutron scattering and pulsed-gradient spin-echo NMR. Int J Pharm 317(2):175–186.  https://doi.org/10.1016/j.ijpharm.2006.03.003CrossRefPubMedGoogle Scholar
  21. 21.
    Ferruti P, Manzoni S, Richardson SCW, Duncan R, Pattrick NG, Mendichi R, Casolaro M (2000) Amphoteric linear poly(amido-amine)s as endosomolytic polymers: correlation between physicochemical and biological properties. Macromolecules 33(21):7793–7800.  https://doi.org/10.1021/ma000378hCrossRefGoogle Scholar
  22. 22.
    Lai P-S, Lou P-J, Peng C-L, Pai C-L, Yen W-N, Huang M-Y, Young T-H, Shieh M-J (2007) Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy. J Control Release 122(1):39–46.  https://doi.org/10.1016/j.jconrel.2007.06.012CrossRefPubMedGoogle Scholar
  23. 23.
    Milhem OM, Myles C, McKeown NB, Attwood D, D’Emanuele A (2000) Polyamidoamine Starburst® dendrimers as solubility enhancers. Int J Pharm 197(1–2):239–241.  https://doi.org/10.1016/S0378-5173(99)00463-9CrossRefPubMedGoogle Scholar
  24. 24.
    Tanzi MC, Rusconi L, Barozzi C, Ferruti P, Angiolini L, Nocentini M, Barone V, Barbucci R (1984) Synthesis and characterization of piperazine-derived poly(amido-amine)s with different distributions of amido- and amino-groups along the macromolecular chain. Polymer 25(6):863–868.  https://doi.org/10.1016/0032-3861(84)90019-3CrossRefGoogle Scholar
  25. 25.
    Hartmann L, Krause E, Antonietti M, Börner HG (2006) Solid-phase supported polymer synthesis of sequence-defined, multifunctional poly(amidoamines). Biomacromolecules 7(4):1239–1244.  https://doi.org/10.1021/bm050884kCrossRefPubMedGoogle Scholar
  26. 26.
    Pattrick NG, Richardson SCW, Casolaro M, Ferruti P, Duncan R (2001) Poly(amidoamine)-mediated intracytoplasmic delivery of ricin A-chain and gelonin. J Control Release 77(3):225–232.  https://doi.org/10.1016/S0168-3659(01)00476-XCrossRefPubMedGoogle Scholar
  27. 27.
    Gussoni M, Greco F, Ferruti P, Ranucci E, Ponti A, Zetta L (2008) Poly(amidoamine)s carrying TEMPO residues for NMR imaging applications. New J Chem 32(2):323–332.  https://doi.org/10.1039/B712896GCrossRefGoogle Scholar
  28. 28.
    Ranucci E, Ferruti P, Suardi MA, Manfredi A (2007) Poly(amidoamine)s with 2-dithiopyridine side substituents as intermediates to peptide–polymer conjugates. Macromol Rapid Commun 28(11):1243–1250.  https://doi.org/10.1002/marc.200700139CrossRefGoogle Scholar
  29. 29.
    Franchini J, Ranucci E, Ferruti P, Rossi M, Cavalli R (2006) Synthesis, physicochemical properties, and preliminary biological characterizations of a novel amphoteric agmatine-based poly(amidoamine) with RGD-like repeating units. Biomacromolecules 7(4):1215–1222.  https://doi.org/10.1021/bm060054mCrossRefPubMedGoogle Scholar
  30. 30.
    Ferruti P, Marchisio MA, Barbucci R (1985) Synthesis, physico-chemical properties and biomedical applications of poly(amidoamine)s. Polymer 26(9):1336–1348.  https://doi.org/10.1016/0032-3861(85)90309-XCrossRefGoogle Scholar
  31. 31.
    Ferruti P (2013) Poly(amidoamine)s: past, present, and perspectives. J Polym Sci A Polym Chem 51(11):2319–2353.  https://doi.org/10.1002/pola.26632CrossRefGoogle Scholar
  32. 32.
    Laursen JS, Engel-Andreasen J, Olsen CA (2015) β-peptoid foldamers at last. Acc Chem Res 48(10):2696–2704.  https://doi.org/10.1021/acs.accounts.5b00257CrossRefPubMedGoogle Scholar
  33. 33.
    Mándity IM, Fülöp F (2015) An overview of peptide and peptoid foldamers in medicinal chemistry. Expert Opin Drug Discovery 10(11):1163–1177.  https://doi.org/10.1517/17460441.2015.1076790CrossRefGoogle Scholar
  34. 34.
    Lin S, Yu X, Tu Y, Xu H, Cheng SZD, Jia L (2010) Poly([small beta]-alanoid-block-[small beta]-alanine)s: synthesis via cobalt-catalyzed carbonylative polymerization and self-assembly. Chem Commun 46(24):4273–4275.  https://doi.org/10.1039/C0CC00324GCrossRefGoogle Scholar
  35. 35.
    Jia L, Sun H, Shay JT, Allgeier AM, Hanton SD (2002) Living alternating copolymerization of N-alkylaziridines and carbon monoxide as a route for synthesis of poly-β-peptoids. J Am Chem Soc 124(25):7282–7283.  https://doi.org/10.1021/ja0263691CrossRefPubMedGoogle Scholar
  36. 36.
    Imamura Y, Watanabe N, Umezawa N, Iwatsubo T, Kato N, Tomita T, Higuchi T (2009) Inhibition of γ-secretase activity by helical β-peptide foldamers. J Am Chem Soc 131(21):7353–7359.  https://doi.org/10.1021/ja9001458CrossRefPubMedGoogle Scholar
  37. 37.
    Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B 49(12):832–864.  https://doi.org/10.1002/polb.22259CrossRefGoogle Scholar
  38. 38.
    Plackett DV, Holm VK, Johansen P, Ndoni S, Nielsen PV, Sipilainen-Malm T, Södergård A, Verstichel S (2006) Characterization of L-polylactide and L-polylactide-polycaprolactone co-polymer films for use in cheese-packaging applications. Packag Technol Sci 19(1):1–24.  https://doi.org/10.1002/pts.704CrossRefGoogle Scholar
  39. 39.
    Zhu Y, Gao C, Liu X, Shen J (2002) Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules 3(6):1312–1319CrossRefPubMedGoogle Scholar
  40. 40.
    Ludueña LN, Alvarez VA, Vazquez A (2007) Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng A 460–461:121–129.  https://doi.org/10.1016/j.msea.2007.01.104CrossRefGoogle Scholar
  41. 41.
    Miao Z-M, Cheng S-X, Zhang X-Z, Zhuo R-X (2005) Synthesis, characterization, and degradation behavior of amphiphilic poly-α,β-[N-(2-hydroxyethyl)-l-aspartamide]-g-poly(ε-caprolactone). Biomacromolecules 6(6):3449–3457.  https://doi.org/10.1021/bm050551nCrossRefPubMedGoogle Scholar
  42. 42.
    Yuan C, Lu H-C, Li Q-Z, Yang S, Zhao Q-L, Huang J, Wei L-H, Ma Z (2012) Synthesis of well-defined amphiphilic polymethylene-b-poly(ε-caprolactone)-b-poly(acrylic acid) triblock copolymer via a combination of polyhomologation, ring-opening polymerization, and atom transfer radical polymerization. J Polym Sci A Polym Chem 50(12):2398–2405.  https://doi.org/10.1002/pola.26015CrossRefGoogle Scholar
  43. 43.
    Ku SH, Lee SH, Park CB (2012) Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation. Biomaterials 33(26):6098–6104.  https://doi.org/10.1016/j.biomaterials.2012.05.018CrossRefPubMedGoogle Scholar
  44. 44.
    Monsalve LN, Gillanders F, Baldessari A (2012) Promiscuous behavior of Rhizomucor miehei lipase in the synthesis of N-substituted β-amino esters. Eur J Org Chem 2012(6):1164–1170.  https://doi.org/10.1002/ejoc.201101624CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alicia Baldessari
    • 1
    Email author
  • Guadalupe García Liñares
    • 1
  1. 1.Facultad de Ciencias Exactas y Naturales, Laboratorio de Biocatálisis, Departamento de Química Orgánica y UMYMFORUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations