Advertisement

Lipase-Catalyzed Acetylation and Esterification of Bile Acids

  • Alicia BaldessariEmail author
  • Guadalupe García Liñares
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1835)

Abstract

In this chapter we describe the application of lipases as catalysts in reactions on a relevant family of steroids: the bile acids. Twenty three monoacetyl, diacetyl, and ester derivatives of deoxycholic, chenodeoxycholic, lithocholic, and cholic acids, 15 of them new compounds, were obtained through lipase-catalyzed acetylation, esterification, and alcoholysis reactions in very good to excellent yield and a highly regioselective way. Among them, acetylated ester products, in which the lipase catalyzed both reactions in one pot, were obtained. The influence of various reaction parameters in the enzymatic reactions, such as enzyme source, nucleophile/substrate ratio, enzyme/substrate ratio, solvent, and temperature, was studied. Some of the reported products are novel, and it is not possible to obtain them satisfactorily by following traditional synthetic procedures. Due to its singular structure containing three hydroxyl groups, cholic acid showed a different behavior in the enzymatic reactions, from that observed for the other three bile acids studied. In order to shed light to different behaviors of bile acids in the enzymatic reactions, molecular modeling was applied to substrates and some derivatives.

Key words

Lipases Acetylation Esterification Alcoholysis Bile acids 

References

  1. 1.
    Setchell KD, Kritchevsky D, Nair PP (2012) The bile acids: chemistry, physiology, and metabolism: volume 4: methods and applications. Springer Science & Business Media, BerlinGoogle Scholar
  2. 2.
    Hofmann AF, Hagey LR (2014) Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res 55(8):1553–1595CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yu D, Mattern DL, Forman BM (2012) An improved synthesis of 6α-ethylchenodeoxycholic acid (6ECDCA), a potent and selective agonist for the Farnesoid X Receptor (FXR). Steroids 77(13):1335–1338.  https://doi.org/10.1016/j.steroids.2012.09.002CrossRefPubMedGoogle Scholar
  4. 4.
    Bansal S, Singh M, Kidwai S, Bhargava P, Singh A, Sreekanth V, Singh R, Bajaj A (2014) Bile acid amphiphiles with tunable head groups as highly selective antitubercular agents. Med Chem Commun 5(11):1761–1768CrossRefGoogle Scholar
  5. 5.
    Brossard D, El Kihel L, Clément M, Sebbahi W, Khalid M, Roussakis C, Rault S (2010) Synthesis of bile acid derivatives and in vitro cytotoxic activity with pro-apoptotic process on multiple myeloma (KMS-11), glioblastoma multiforme (GBM), and colonic carcinoma (HCT-116) human cell lines. Eur J Med Chem 45(7):2912–2918CrossRefPubMedGoogle Scholar
  6. 6.
    Hassan N, Ahad A, Ali M, Ali J (2010) Chemical permeation enhancers for transbuccal drug delivery. Expert Opin Drug Deliv 7(1):97–112CrossRefPubMedGoogle Scholar
  7. 7.
    Yang L, Zhang H, Fawcett JP, Mikov M, Tucker IG (2011) Effect of bile salts on the transport of morphine-6-glucuronide in rat brain endothelial cells. J Pharm Sci 100(4):1516–1524CrossRefPubMedGoogle Scholar
  8. 8.
    Yang L, Fawcett JP, Østergaard J, Zhang H, Tucker IG (2011) Mechanistic studies of the effect of bile salts on rhodamine 123 uptake into RBE4 cells. Mol Pharm 9(1):29–36CrossRefPubMedGoogle Scholar
  9. 9.
    Jampilek J, Brychtova K (2012) Azone analogues: classification, design, and transdermal penetration principles. Med Res Rev 32(5):907–947CrossRefPubMedGoogle Scholar
  10. 10.
    Carrea G, Riva S (2008) Organic synthesis with enzymes in non-aqueous media. John Wiley & Sons, Hoboken, NJCrossRefGoogle Scholar
  11. 11.
    Baldessari A, Iglesias LE (2012) Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides. Methods Mol Biol 861:457–469CrossRefPubMedGoogle Scholar
  12. 12.
    Hall M, Kroutil W, Faber K (2013) The evolving role of biocatalysis in asymmetric synthesis. Asymmetric Synthesis II: More Methods and Applications: 221–231Google Scholar
  13. 13.
    Gotor V, Alfonso I, García-Urdiales E (2008) Asymmetric organic synthesis with enzymes. John Wiley & Sons, Hoboken, NJCrossRefGoogle Scholar
  14. 14.
    Ferrero M, Gotor V, Patel R (2000) Stereoselective biocatalysis. Marcel Dekker, New York, p 289Google Scholar
  15. 15.
    Baldessari A, Mangone CP, Gros EG (1998) Lipase-catalyzed acylation and deacylation reactions of pyridoxine, a member of vitamin-B6 group. Helv Chim Acta 81(12):2407–2413CrossRefGoogle Scholar
  16. 16.
    Rustoy EM, Baldessari A (2005) An efficient chemoenzymatic synthesis of the bactericide lapyrium chloride. Eur J Org Chem 2005(21):4628–4632CrossRefGoogle Scholar
  17. 17.
    Monsalve LN, Rosselli S, Bruno M, Baldessari A (2005) Enzyme-catalysed transformations of ent-Kaurane Diterpenoids. Eur J Org Chem 2005(10):2106–2115CrossRefGoogle Scholar
  18. 18.
    Monsalve LN, Rosselli S, Bruno M, Baldessari A (2009) Lipase-catalysed preparation of acyl derivatives of the germacranolide cnicin. J Mol Catal B 57(1):40–47CrossRefGoogle Scholar
  19. 19.
    García Liñares G, Parraud G, Labriola C, Baldessari A (2012) Chemoenzymatic synthesis and biological evaluation of 2- and 3-hydroxypyridine derivatives against Leishmania mexicana. Bioorg Med Chem 20(15):4614–4624.  https://doi.org/10.1016/j.bmc.2012.06.028CrossRefPubMedGoogle Scholar
  20. 20.
    García Liñares G, Arroyo Mañez P, Baldessari A (2014) Lipase-catalyzed synthesis of substituted phenylacetamides: hammett analysis and computational study of the enzymatic aminolysis. Eur J Org Chem 2014(29):6439–6450CrossRefGoogle Scholar
  21. 21.
    Baldessari A, Maier MS, Gros EG (1995) Enzymatic deacetylation of steroids bearing labile functions. Tetrahedron Lett 36(25):4349–4352CrossRefGoogle Scholar
  22. 22.
    Baldessari A, Bruttomesso AC, Gros EG (1996) Lipase-catalysed regioselective deacetylation of androstane derivatives. Helv Chim Acta 79(4):999–1004CrossRefGoogle Scholar
  23. 23.
    Bruttomesso AC, Baldessari A (2004) Lipase-catalysed deacetylation of androstane and pregnane derivatives: influence of ring D substitution. J Mol Catal B 29(1):149–153CrossRefGoogle Scholar
  24. 24.
    Bruttomesso AC, Tiscornia A, Baldessari A (2004) Lipase-catalyzed preparation of biologically active esters of dehydroepiandrosterone. Biocatal Biotransformation 22(3):215–220CrossRefGoogle Scholar
  25. 25.
    Rustoy EM, Arias IER, Baldessari A (2005) Regioselective enzymatic synthesis of estradiol 17-fatty acid esters. ARKIVOC 12:175–188Google Scholar
  26. 26.
    Monsalve LN, Machado Rada MY, Ghini AA, Baldessari A (2008) An efficient enzymatic preparation of 20-pregnane succinates: chemoenzymatic synthesis of 20β-hemisuccinyloxy-5αH-pregnan-3-one. Tetrahedron 64(8):1721–1730.  https://doi.org/10.1016/j.tet.2007.12.006CrossRefGoogle Scholar
  27. 27.
    Quintana PG, Baldessari A (2009) Lipase-catalyzed regioselective preparation of fatty acid esters of hydrocortisone. Steroids 74(13):1007–1014CrossRefPubMedGoogle Scholar
  28. 28.
    Quintana PG, Guillén M, Marciello M, Valero F, Palomo JM, Baldessari A (2012) Immobilized heterologous Rhizopus oryzae lipase as an efficient catalyst in the acetylation of cortexolone. Eur J Org Chem 23:4306–4312CrossRefGoogle Scholar
  29. 29.
    Baldessari A (2012) Lipases as catalysts in synthesis of fine chemicals. Methods Mol Biol 861:445–456CrossRefPubMedGoogle Scholar
  30. 30.
    Quintana PG, Canet A, Marciello M, Valero F, Palomo JM, Baldessari A (2015) Enzyme-catalyzed preparation of chenodeoxycholic esters by an immobilized heterologous Rhizopus oryzae lipase. J Mol Catal B 118:36–42CrossRefGoogle Scholar
  31. 31.
    Whittall J, Sutton PW (2009) Practical methods for biocatalysis and biotransformations. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  32. 32.
    García Liñares G, Antonela Zígolo M, Simonetti L, Longhi SA, Baldessari A (2015) Enzymatic synthesis of bile acid derivatives and biological evaluation against Trypanosoma cruzi. Bioorg Med Chem 23(15):4804–4814.  https://doi.org/10.1016/j.bmc.2015.05.035CrossRefPubMedGoogle Scholar
  33. 33.
    Zígolo MA, García Liñares G, Baldessari A (2016) New cholic acid derivatives: biocatalytic synthesis and molecular docking study. Steroids 107:10–19.  https://doi.org/10.1016/j.steroids.2015.12.014CrossRefPubMedGoogle Scholar
  34. 34.
    Dayal B, Speck J, Bagan E, Tint G, Salen G (1981) p-Toluenesulfonic acid/methanol: mild reagent for the preparation of bile acid methyl esters. Steroids 37(2):239–242CrossRefPubMedGoogle Scholar
  35. 35.
    Bai X, Barnes C, Dias JR (2009) Synthesis and comparative spectroscopic analysis of two chenodeoxycholic acid (CDCA) derivatives with closely related 7α-ester moieties. Tetrahedron Lett 50(5):503–505CrossRefGoogle Scholar
  36. 36.
    Uekawa T, Ishigami K, Kitahara T (2004) Short-step synthesis of chenodiol from stigmasterol. Biosci Biotechnol Biochem 68(6):1332–1337CrossRefPubMedGoogle Scholar
  37. 37.
    Hu X, Zhang Z, Zhang X, Li Z, Zhu X (2005) Selective acylation of cholic acid derivatives with multiple methacrylate groups. Steroids 70(8):531–537CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de Ciencias Exactas y Naturales, Laboratorio de Biocatálisis, Departamento de Quimica Orgánica y UMYMFORUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations