Toward Unravelling the Genetic Determinism of the Acquisition of Salt and Osmotic Stress Tolerance Through In Vitro Selection in Medicago truncatula

  • Adel M. Elmaghrabi
  • Hilary J. Rogers
  • Dennis Francis
  • Sergio OchattEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1822)


Changes in global climate and the nonstop increase in demographic pressure have provoked a stronger demand for agronomic resources at a time where land suitable for agriculture is becoming a rare commodity. They have also generated a number of abiotic stresses which exacerbate effects of diseases and pests and result in physiological and metabolic disorders that ultimately impact on yield when and where it is most needed. Therefore, a major scientific and agronomic challenge today is that of understanding and countering the impact of stress on yield. In this respect, in vitro biotechnology would be an efficient and feasible breeding alternative, particularly now that the genetic and genomic tools needed to unravel the mechanisms underlying the acquisition of tolerance to stress have become available. Legumes in general play a central role in a sustainable agriculture due to their capacity to symbiotically fix the atmospheric nitrogen, thereby reducing the need for fertilizers. They also produce grains that are rich in protein and thus are important as food and feed. However, they also suffer from abiotic stresses in general and osmotic stress and salinity in particular. This chapter provides a detailed overview of the methods employed for in vitro selection in the model legume Medicago truncatula for the generation of novel germplasm capable of resisting NaCl- and PEG-induced osmotic stress. We also address the understanding of the genetic determinism in the acquisition of stress resistance, which differs between NaCl and PEG. Thus, the expression of genes linked to growth (WEE1), in vitro embryogenesis (SERK), salt tolerance (SOS1) proline synthesis (P5CS), and ploidy level and cell cycle (CCS52 and WEE1) was upregulated under NaCl stress, while under PEG treatment the expression of MtWEE1 and MtCCS52 was significantly increased, but no significant differences were observed in the expression of genes MtSERK1 and MtP5CS, and MtSOS1 was downregulated. A number of morphological and physiological traits relevant to the acquisition of stress resistance were also assessed, and methods used to do so are also detailed.


Callus Cell cycle checkpoint In vitro selection Medicago truncatula NaCl PEG6000 Proline Stress resistance Endoreduplication 


  1. 1.
    Ochatt SJ (2015) Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes. Agron Sustain Dev 35:535–552CrossRefGoogle Scholar
  2. 2.
    Atif RM, Patat-Ochatt EM, Svabova L et al (2013) Gene transfer in legumes. In: Lüttge U, Beyschlag W, Francis D, Cushman J (eds) Progress in botany, vol 74. Springer, Berlin, Heidelberg, pp 37–100CrossRefGoogle Scholar
  3. 3.
    Gatti I, Guindón F, Bermejo C et al (2016) In vitro tissue culture in breeding programs of leguminous pulses: use and current status. Plant Cell Tissue Organ Cult 127:543–559CrossRefGoogle Scholar
  4. 4.
    Jacob C, Carrasco B, Schwember AR (2016) Advances in breeding and biotechnology of legume crops. Plant Cell Tissue Organ Cult 127:561–584CrossRefGoogle Scholar
  5. 5.
    Araújo SS, Beebe S, Crespi M et al (2015) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci 34:237–280CrossRefGoogle Scholar
  6. 6.
    Araújo S, Balestrazzi A, Faè M et al (2016) MtTdp2α-overexpression boosts the growth phase of Medicago truncatula cell suspension and increases the expression of key genes involved in the antioxidant response and genome stability. Plant Cell Tissue Organ Cult 127:675–680CrossRefGoogle Scholar
  7. 7.
    Duque AS, López-Gómez M, Kráčmarová J et al (2016) Genetic engineering of polyamine metabolism changes Medicago truncatula responses to water deficit. Plant Cell Tissue Organ Cult 127:681–690CrossRefGoogle Scholar
  8. 8.
    Elmaghrabi AM, Ochatt S, Rogers HJ, Francis D (2013) Enhanced tolerance to salinity following cellular acclimation to increasing NaCl levels in Medicago truncatula. Plant Cell Tissue Org Cult 114:61–70CrossRefGoogle Scholar
  9. 9.
    Elmaghrabi AM, Rogers HJ, Francis D, Ochatt SJ (2017) PEG induces high expression of the cell cycle checkpoint gene WEE1 in embryogenic callus of Medicago truncatula: potential link between cell cycle checkpoint regulation and osmotic stress. Front Plant Sci 8:1479. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Badri M, Ilahi H, Huguet T et al (2007) Quantitative and molecular genetic variation in sympatric populations of Medicago laciniata and M. truncatula (Fabaceae): relationships with eco-geographical factors. Genet Res 89:107–122PubMedCrossRefGoogle Scholar
  11. 11.
  12. 12.
    Motan JF, Becana M, Iturbeormaetxe I et al (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352Google Scholar
  13. 13.
    Gonzalez EM, Aparicio-Tejo PM, Gondon AJ et al (1998) Water-deficit effects on carbon and nitrogen metabolism of pea nodules. J Exp Bot 49:1705–1714CrossRefGoogle Scholar
  14. 14.
    Costa França MG, Pham Thi AT, Pimentel C et al (2000) Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environ Exp Bot 43:227–237PubMedCrossRefGoogle Scholar
  15. 15.
    Galvez L, Gonzalez EM, Arrese-Igor C (2005) Evidence for carbon flux shortage and strong carbon/nitrogen interaction in pea nodules at early stages of water stress. J Exp Bot 56:2551–2561PubMedCrossRefGoogle Scholar
  16. 16.
    Zahaf O, Blanchet S, de Zélicourt A et al (2012) Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes. Mol Plant 5:1068–1081CrossRefPubMedGoogle Scholar
  17. 17.
    Alcântara A, Morgado RS, Silvestre S et al (2015) A method to identify early-stage transgenic Medicago truncatula with improved physiological response to water deficit. Plant Cell Tissue Organ Cult 122:605–616CrossRefGoogle Scholar
  18. 18.
    Nunes CMJ, Araújo SS, Marques da Silva J et al (2008) Physiological responses of the legume model Medicago truncatula cv. Jemalong to water deficit. Environ Exp Bot 63:289–296CrossRefGoogle Scholar
  19. 19.
    Queiros F, Fidalgo F, Santos I, Salema R (2007) In vitro selection of salt tolerant cell lines in Solanum tuberosum L. Biol Plant 51:728–734CrossRefGoogle Scholar
  20. 20.
    Feki K, Quintero FJ, Pardo JM, Masmoudi K (2011) Regulation of durum wheat NaC/HC exchanger TdSOS1by phosphorylation. Plant Mol Biol 76:545–556PubMedCrossRefGoogle Scholar
  21. 21.
    Tester M, Leigh RA (2001) Partitioning of transport processes in roots. J Exp Bot 52:442–457CrossRefGoogle Scholar
  22. 22.
    Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–507PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kim DY, Jin J-Y, Alejandro S et al (2010) Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis. Physiol Plant 139:170–180PubMedCrossRefGoogle Scholar
  24. 24.
    Alet IA, Sánchez SH, Cuevas CJ et al (2012) New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Sci 182:94–100PubMedCrossRefGoogle Scholar
  25. 25.
    Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250CrossRefPubMedGoogle Scholar
  26. 26.
    Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499PubMedCrossRefGoogle Scholar
  27. 27.
    Hernandez JA, Campillo A, Jimenez A et al (1999) Response of antioxidant system and leaf water relation to NaCl stress in pea plants. New Phytol 141:241–251CrossRefGoogle Scholar
  28. 28.
    Abebe T, Guanzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Trapp S, Feificova D, Rasmussen FN, Bauer-Gottein P (2008) Plant uptake of NaCl in relation to enzyme kinetics and toxic effects. Environ Exp Bot 64:1–7CrossRefGoogle Scholar
  30. 30.
    Trinchant JC, Boscari A, Spennato G et al (2004) Proline betaine accumulation and metabolism in alfalfa plants under sodium chloride stress. Exploring its compartmentalization in nodules. Plant Physiol 135:1583–1594PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11. CrossRefPubMedGoogle Scholar
  32. 32.
    Yang W-J, Rich PJ, Axtell JD et al (2003) Genotypic variation for glycinebetaine in sorghum. Crop Sci 43:162–169CrossRefGoogle Scholar
  33. 33.
    Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349PubMedCrossRefGoogle Scholar
  34. 34.
    Aydi S, Sassi S, Debouba M et al (2010) Resistance of Medicago truncatula to salt stress is related to glutamine synthetase activity and sodium sequestration. J Plant Nutr Soil Sci 173:892–899CrossRefGoogle Scholar
  35. 35.
    Surjus A, Durand M (1996) Lipid changes in soybean root membranes in response to salt treatment. J Exp Bot 47:17–23CrossRefGoogle Scholar
  36. 36.
    Chen J-B, Wang S-M, Jing R-L, Mao X-G (2009) Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. J Plant Physiol 166:12–19PubMedCrossRefGoogle Scholar
  37. 37.
    Choudhary NL, Sairam RK, Tyagi A (2005) Expression of 1-pyrroline−5 carboxylate synthetase gene during drought in rice (Oryza sativa L.). Indian J Biochem Biophys 42:366–370PubMedGoogle Scholar
  38. 38.
    Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agüero JA et al (2008) Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol Biochem 46:82–92PubMedCrossRefGoogle Scholar
  39. 39.
    Somboonwatthanaku I, Dorling S, Leung S et al (2010) Proline biosynthetic gene expression in tissue cultures of rice (Oryza sativa L.) in response to saline treatment. Plant Cell Tissue Organ Cult 103:369–376CrossRefGoogle Scholar
  40. 40.
    Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421Google Scholar
  41. 41.
    Vinocur B, Altman A (2005) Recent advances in Engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:1913–1923CrossRefGoogle Scholar
  42. 42.
    Zsigmond L, Szepesib A, Tari I et al (2012) Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis. Plant Sci 182:87–93PubMedCrossRefGoogle Scholar
  43. 43.
    Shi HZ, Lee B-H, Wu S-J, Zhu J-K (2003) Overexpression of a plasma membrane Na?/H? Antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85PubMedCrossRefGoogle Scholar
  44. 44.
    Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9CrossRefGoogle Scholar
  45. 45.
    Tang R-J, Liu H, Bao Y et al (2010) The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol Biol 74:367–380PubMedCrossRefGoogle Scholar
  46. 46.
    Li D, Zhang Y, Hu X et al (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Cabuslay SG, Ito O, Alejar AA (2002) Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Sci 163:815–827CrossRefGoogle Scholar
  48. 48.
    Levitt J (1972) Responses of plants to environmental stresses. Academic Press, New York, NYGoogle Scholar
  49. 49.
    Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:2273–2467CrossRefGoogle Scholar
  50. 50.
    Golldack D, Li C, Mohan H et al (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195PubMedCrossRefGoogle Scholar
  52. 52.
    Fulda S, Mikkat S, Stegmann H, Horn R (2011) Physiology and proteomics of drought stress acclimation in sunflower (Helianthus annuus L.). Plant Biol 13:632–642PubMedCrossRefGoogle Scholar
  53. 53.
    Deinlein U, Stephan AB, Horie T et al (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ochatt S, Muilu R, Ribalta F (2008) Cell morphometry and osmolarity as early indicators of the onset of embryogenesis from cell suspension cultures of grain legumes and model systems. Plant Biosyst 142:480–486CrossRefGoogle Scholar
  55. 55.
    Ochatt SJ, Moessner A (2010) Rounding up plant cells. Int J Plant Biol 1:e8. CrossRefGoogle Scholar
  56. 56.
    Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124PubMedCrossRefGoogle Scholar
  57. 57.
    Sreenivasulu N, Varshney RK, Kavi Kishor PB et al (2004) Functional genomics for tolerance to abiotic stress in cereals: a functional genomics approach. In: Gupta PK, Varshney RK (eds) Cereal genomic. Springer, Dordrecht, pp 483–514. CrossRefGoogle Scholar
  58. 58.
    De Schutter K, Joubes J, Cools T et al (2007) Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell 19:211–225PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefGoogle Scholar
  60. 60.
    Zhao L, Wang P, Hou H et al (2014) Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize. PLoS One 9:e106070. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Roy S (2016) Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signal Behav 11:e1117723. CrossRefPubMedGoogle Scholar
  62. 62.
    Sorrell DA, Marchbank A, McMahon K et al (2002) A WEE1 homologue from Arabidopsis thaliana. Planta 215:518–522PubMedCrossRefGoogle Scholar
  63. 63.
    West G, Inzé D, Beemster GTS (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol 135:1050–1058PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Skirycz A, Claeys H, De Bodt S et al (2011) Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. Plant Cell 23:1876–1888PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Gonzalez N, Hernould M, Delmas F et al (2004) Molecular characterization of a WEE1 gene homologue in tomato (Lycopersicon esculentum mill.). Plant Mol Biol 56:849–861PubMedCrossRefGoogle Scholar
  66. 66.
    Gonzalez N, Gevaudant F, Hernould M, Chevalier C, Mouras A (2007) The cell cycle associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit. Plant J 51:642–655PubMedCrossRefGoogle Scholar
  67. 67.
    Sun Y, Dilkes BP, Zhang C et al (1999) Characterization of maize (Zea mays L.) Wee1 and its activity in developing endosperm. Proc Natl Acad Sci U S A 96:4180–4185PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Cebolla A, Vinardell JM, Kiss E et al (1999) The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants. EMBO J 18:4476–4484PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Larson-Rabin Z, Li Z, Masson PH, Day CD (2009) FZR2/CCS52A1 expression is a determinant of endoreduplication and cell expansion in Arabidopsis. Plant Physiol 149:874–884PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Nolan KE, Rose RJ, Gorst JG (1989) Regeneration Medicago truncatula from tissue culture: increased somatic embryogenesis using explants from regenerated plants. Plant Cell Rep 8:278–281PubMedCrossRefGoogle Scholar
  71. 71.
    Chabaud M, Larsonneau C, Marmouget C et al (1996) Transformation of barrel medic (Medicago truncatula Gaertn.) by agrobacterium tumefaciens and regeneration via somatic embryogenesis of transgenic plants with the MtENOD12 nodulin promoter fused to the gus reporter gene. Plant Cell Rep 15:305–310PubMedCrossRefGoogle Scholar
  72. 72.
    Hoffmann B, Trinh TH, Leung J et al (1997) A new Medicago truncatula line with superior in vitro regeneration, transformation and symbiotic properties isolated through cell culture selection. Mol Plant-Microbe Interact 10:307–315CrossRefGoogle Scholar
  73. 73.
    Trinh TH, Ratet P, Kondorosi E et al (1998) Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. Falcata lines improved in somatic embryogenesis. Plant Cell Rep 17:345–355CrossRefGoogle Scholar
  74. 74.
    Wang X-D, Nolan KE, Irwanto RR et al (2011) Ontogeny of embryogenic callus in Medicago truncatula: the fate of the pluripotent and totipotent stem cells. Ann Bot 107:599–609PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Iantcheva A, Vlahova M, Bakalova E et al (1999) Regeneration of diploid annual medics via direct somatic embryogenesis promoted by thidiazuron and benzylaminopurine. Plant Cell Rep 18:904–910CrossRefGoogle Scholar
  76. 76.
    Iantcheva A, Vlahova M, Trinh TH et al (2001) Assessment of polysomaty, embryo formation and regeneration in liquid media for various species of diploid annual Medicago. Plant Sci 160:621–627PubMedCrossRefGoogle Scholar
  77. 77.
    Svetoslavova G, Vlahova M, Iantcheva A et al (2005) High frequency plant regeneration of diploid Medicago coerulea through somatic embryogenesis. Biotech Biotech Equip 19:57–61CrossRefGoogle Scholar
  78. 78.
    Duque AS, Pires AS, Santos DM et al (2006) Efficient somatic embryogenesis and plant regeneration from long-term cell suspension cultures of Medicago truncatula cv. Jemalong. In Vitro Cell Dev Biol Plant 42:270–273CrossRefGoogle Scholar
  79. 79.
    Ochatt S, Jacas L, Patat-Ochatt EM, Djennane S (2013) Flow cytometric analysis and molecular characterization of agrobacterium tumefaciens-mediated transformants of Medicago truncatula. Plant Cell Tissue Organ Cult 113:237–244CrossRefGoogle Scholar
  80. 80.
    Anjanasree K, Neelakandan WK (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620CrossRefGoogle Scholar
  81. 81.
    Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188PubMedCrossRefGoogle Scholar
  82. 82.
    Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166CrossRefGoogle Scholar
  83. 83.
    Sotirova V, Shtereva L, Zagorska N et al (1999) Resistance responses of plants regenerated from tomato anther and somatic tissue cultures to Clavibacter michiganense. Israel J Plant Sci 47:237–243CrossRefGoogle Scholar
  84. 84.
    Lu S, Peng X, Guo Z et al (2007) In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon transvaalensis x C. dactylon) and their physiological responses to salt and drought stress. Plant Cell Rep 26:1413–1420PubMedCrossRefGoogle Scholar
  85. 85.
    Ochatt SJ, Power JB (1989) Selection for salt/drought tolerance using protoplast and explant-derived tissue cultures of Colt cherry (Prunus avium x pseudocerasus). Tree Physiol 5:259–266PubMedCrossRefGoogle Scholar
  86. 86.
    Ochatt SJ, Power JB (1989) Cell wall synthesis and salt (saline) sensitivity of Colt cherry (Prunus avium x pseudocerasus) protoplasts. Plant Cell Rep 8:365–367PubMedCrossRefGoogle Scholar
  87. 87.
    Ochatt SJ, Marconi PL, Radice S et al (1999) In vitro recurrent selection of potato: production and characterization of salt tolerant cell lines and plants. Plant Cell Tissue Org Cult 55:1–8CrossRefGoogle Scholar
  88. 88.
    Chen S, Chai M, Jia Y et al (2011) In vitro selection of salt tolerant variants following 60Co gamma irradiation of longterm callus cultures of Zoysia matrella [L.] Merr. Plant Cell Tissue Organ Cult 107:493–500CrossRefGoogle Scholar
  89. 89.
    Davenport SB, Gallego SM, Benavides MP et al (2003) Behaviour of antioxidant defense system in the adaptive response to salt stress in Helianthus annuus L. cells. Plant Growth Reg 40:81–88CrossRefGoogle Scholar
  90. 90.
    Gu R, Liu Q, Pei D, Jiang X (2004) Understanding saline and osmotic tolerance of Populus euphratica suspended cells. Plant Cell Tissue Organ Cult 78:261–265CrossRefGoogle Scholar
  91. 91.
    Basu S, Gangopadhyay G, Mukherjee BB, Gupta S (1997) Plant regeneration of salt adapted callus of indica rice (var.Basmati 370) in saline condition. Plant Cell Tissue Organ Cult 50:153–159CrossRefGoogle Scholar
  92. 92.
    Tao L, Van Staden SJ (2000) Selection and characterization of sodium chloride-tolerant callus of Glycine max (L) Merr cv. Acme. Plant Growth Reg 31:195–207CrossRefGoogle Scholar
  93. 93.
    Zhu J-K (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Merchan F, Breda C, Hormaeche JP et al (2003) A Kruppel-like transcription factor gene is involved in salt stress responses in Medicago spp. Plant Soil 257:1–9CrossRefGoogle Scholar
  96. 96.
    Veatch ME, Smith SE, Vandemark G (2004) Shoot biomass production among accession of Medicago truncatula exposed to NaCl. Crop Sci 44:1008–1013CrossRefGoogle Scholar
  97. 97.
    Machuka J, Rasha AO, Magiri E et al (2008) In vitro selection and characterization of drought tolerant somaclones of tropical Maize (Zea mays L.). Biotechnology 7:641–650CrossRefGoogle Scholar
  98. 98.
    Claeys H, Van Landeghem S, Dubois M et al (2014) What is stress? Dose-response effects in commonly used in vitro stress assays. Plant Physiol 165:519–527PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Zhang L, Ma H, Chen T et al (2014) Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One 9(11):e112807PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kurth E, Cramer GR, Lauchli A, Epstein E (1986) Effects of NaCI and CaCl2 on cell enlargement and cell production in cotton roots. Plant Physiol 82:1102–1106PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Farooq M, Wahid A, Kobayashi N (2009) Plant drought effects, mechanisms and management. Agron Sustain Dev 29:185–212CrossRefGoogle Scholar
  102. 102.
    Ochatt SJ (1994) In vitro selection for salt/drought tolerance in Colt cherry. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, Somaclonal variation in crop improvement II, vol 36. Springer-Verlag, Heidelberg, pp 223–238Google Scholar
  103. 103.
    Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Nolan KE, Kurdyukov S, Rose RJ (2009) Expression of the somatic embryogenesis receptor like kinase1 (SERK1) gene is associated with developmental change in the life cycle of model legume Medicago truncatula. J Exp Bot 60:1759–1771PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants. Functional domains, evolution and regulation. Eur J Biochem 262:247–257PubMedCrossRefGoogle Scholar
  106. 106.
    Miki Y, Hashiba M, Hisajima S (2001) Establishment of salt stress tolerant rice plant through set up NaCl treatment in vitro. Plant Biol 44:391–395CrossRefGoogle Scholar
  107. 107.
    Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620PubMedCrossRefGoogle Scholar
  108. 108.
    Leone A, Costa A, Tucci M, Grillo S (1994) Adaptation versus shock response to polyethylene glycol-induced low water potential in cultured potato cells. Physiol Plant 92:21–30CrossRefGoogle Scholar
  109. 109.
    Gossett DR, Banks SW, Millhollon EP, Lucas MC (1996) Antioxidant response to NaCl stress in a control and a NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine and exogenous glutathione. Plant Physiol 112:803–809PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Shankhdhar D, Shankhdhar SC, Mani SC (2000) In vitro selection for salt tolerance in rice. Plant Biol 43:477–480CrossRefGoogle Scholar
  111. 111.
    Ochatt SJ, Pontecaille C, Rancillac M (2000) The growth regulators used for bud regeneration and shoot rooting affect the competence for flowering and seed set in regenerated plants of protein pea. In Vitro Cell Dev Biol Plants 36:188–193CrossRefGoogle Scholar
  112. 112.
    Rubio MC, González EM, Minchin FR et al (2002) Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Plant Physiol 115:531–540CrossRefGoogle Scholar
  113. 113.
    Hu H, Xiong L, Yang Y (2005) Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta 222:107–117PubMedCrossRefGoogle Scholar
  114. 114.
    Sakthivelu G, Akitha Devi MK, Giridhar P et al (2008) Drought-induced alterations in growth, osmotic potential and in vitro regeneration of soybean cultivars. Gen Appl Plant Physiol 34:103–112Google Scholar
  115. 115.
    Guóth A, Benyo D, Csiszar J et al (2010) Relationship between osmotic stress-induced abscisic acid accumulation, biomass production and plant growth in drought-tolerant and -sensitive wheat cultivars. Acta Physiol Plant 32:719–727CrossRefGoogle Scholar
  116. 116.
    Mahmood I, Razzaq A, Hafiz AI et al (2012) Interaction of callus selection media and stress duration for in vitro selection of drought tolerant callus of wheat. Afr J Biotechnol 11:4000–4006Google Scholar
  117. 117.
    Rai MK, Kaliaa RK, Singh R et al (2011) Developing stress tolerant plants through in vitro selection—an overview of the recent progress. Environ Exp Bot 71:89–98CrossRefGoogle Scholar
  118. 118.
    Yang L, Li Y, Shen H (2012) Somatic embryogenesis and plant regeneration from immature zygotic embryo cultures of mountain ash (Sorbus pohuashanensis). Plant Cell Tissue Organ Cult 109:547–556CrossRefGoogle Scholar
  119. 119.
    Michel BE, Kaufmann MR (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiol 51:914–916PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Lu Z, Neumann PM (1998) Water-stressed maize, barley and rice seedlings show species diversity in mechanisms of leaf growth inhibition. J Exp Bot 49:1945–1952CrossRefGoogle Scholar
  121. 121.
    Srivastava DK, Gupta VK, Sharma DR (1995) In vitro selection and characterization of water stress tolerant callus cultures of tomato (Lycopersicon esculentum L.). Indian J Plant Physiol 38:99–104Google Scholar
  122. 122.
    Attree SM, Pomeroy MK, Fowke LC (1995) Development of white spruce (Picea glauca (Moench.) Voss) somatic embryos during culture with abscisic acid and osmoticum, and their tolerance to drying and frozen storage. J Exp Bot 46:433–439CrossRefGoogle Scholar
  123. 123.
    Igasaki T, Sato T, Akashi N et al (2003) Somatic embryogenesis and plant regeneration from immature zygotic embryos of Cryptomeria japonica D. Don. Plant Cell Rep 22:239–243PubMedCrossRefGoogle Scholar
  124. 124.
    Macovei A, Balestrazzi A, Confalonieri M, Carbonera D (2010) The Tyrosyl-DNA phosphodiesterase gene family in Medicago truncatula Gaertn.: bioinformatic investigation and expression profiles in response to copper- and PEG-mediated stress. Planta 232:393–407PubMedCrossRefGoogle Scholar
  125. 125.
    Balestrazzi A, Confalonieri M, Macovei A, Carbonera D (2011) Seed imbibition in Medicago truncatula Gaertn.: expression profiles of DNA repair genes in relation to PEG-mediated stress. J Plant Physiol 168:706–713PubMedCrossRefGoogle Scholar
  126. 126.
    Pintos B, Martin JP, Centeno ML et al (2002) Endogenous cytokinin levels in embryogenic and non- embryogenic calli of Medicago arborea L. Plant Sci 163:955–960CrossRefGoogle Scholar
  127. 127.
    Elmaghrabi AM, Ochatt SJ (2006) Isoenzymes and flow cytometry for the assessment of true-to-typeness of calluses and cell suspension of barrel medic prior to regeneration. Plant Cell Tissue Organ Cult 85:31–43CrossRefGoogle Scholar
  128. 128.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  129. 129.
    Iantcheva A, Slavov S, Prinsen E et al (2005) Somatic embryogenesis of the model legume- Medicago truncatula and other diploid Medics. Plant Cell Tissue Organ Cult 81:37–43CrossRefGoogle Scholar
  130. 130.
    Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158CrossRefPubMedGoogle Scholar
  131. 131.
    Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204CrossRefGoogle Scholar
  132. 132.
    das Neves L, Duque S, de Almeida J et al (1999) Repetitive somatic embryogenesis in Medicago truncatula ssp. Narbonensis and M. truncatula Gaertn cv. Jemalong. Plant Cell Rep 18:398–405CrossRefGoogle Scholar
  133. 133.
    Uchimiya T, Murashige M (1974) Evaluation of parameters in the isolation of viable protoplasts from cultured tobacco cells. Plant Physiol 54:936–944PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Zafar Y, Nenz E, Damiani F et al (1995) Plant regeneration from explant and protoplast derived calluses of Medicago littoralis. Plant Cell Tissue Organ Cult 41:41–48CrossRefGoogle Scholar
  135. 135.
    Denchev P, Velcheva M, Atanassov A (1991) A new approach to direct somatic embryogenesis in Medicago. Plant Cell Rep 10:338–341PubMedCrossRefGoogle Scholar
  136. 136.
    Vergana R, Verbc F, Pitto L et al (1990) Reversible variation in the methylation pattern of carrot DNA during somatic embryogenesis. Plant Cell Tissue Organ Cult 8:697–701Google Scholar
  137. 137.
    Scarpa GM, Pupilli F, Damiani F, Arcioni S (1993) Plant regeneration from callus and protoplasts in Medicago polymorpha. Plant Cell Tissue Organ Cult 35:49–57CrossRefGoogle Scholar
  138. 138.
    Chabaud M, de Carvalho-Niebel F, Barker DG (2003) Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Rep 22:46–51PubMedCrossRefGoogle Scholar
  139. 139.
    Troll W, Lindsley J (1955) A photometric method for the determination of proline. J Biol Chem 215:655–660PubMedGoogle Scholar
  140. 140.
    Boukel M, Houassine D (1997) Adaptation au stress hydrique de quelques variétés de blé dur (Triticum durum). Thèse Magistère, INA, Algérie 90 ppGoogle Scholar
  141. 141.
    Plummer DT (1987) Introduction to practical biochemistry, 3rd edn. McGraw Hill Book Company Ltd, London, pp 179–180Google Scholar
  142. 142.
    Yazici I, Türkan I, Sekmen SH et al (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ Exp Bot 61:49–57CrossRefGoogle Scholar
  143. 143.
    Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Ochatt SJ (2008) Flow cytometry in plant breeding. Cytometry A 73:581–598PubMedCrossRefGoogle Scholar
  145. 145.
    Widholm JM (1972) The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol 47:189–194PubMedCrossRefGoogle Scholar
  146. 146.
    Oparka KJ (1991) Uptake and compartmentation of fluorescent probes by plant cells. J Exp Bot 42:565–579CrossRefGoogle Scholar
  147. 147.
    Spadafora ND, Doonan JH, Herbert RJ et al (2011) Arabidopsis T-DNA insertional lines for CDC25 are hypersensitive to hydroxyurea but not to zeocin or salt stress. Ann Bot 107:1183–1192PubMedCrossRefGoogle Scholar
  148. 148.
    Spadafora ND, Parfitt D, Li S et al (2012) Perturbation of cytokinin and ethylene-signalling pathways explain the strong rooting phenotype exhibited by Arabidopsis expressing the Schizosaccharomyces pombe mitotic inducer, cdc25. BMC Plant Biol 12:45PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Price A, Orellana D, Salleh F et al (2008) A comparison of leaf and petal senescence in wallflower reveals common and distinct patterns of gene expression and physiology. Plant Physiol 147:1898–1912PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDC method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  151. 151.
    Wagstaff C, Bramke I, Breeze E et al (2010) A specific group of genes respond to cold dehydration stress in cut Alstroemeria flowers whereas ambient dehydration stress accelerates developmental senescence expression patterns. J Exp Bot 61:2905–2921PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227PubMedCrossRefGoogle Scholar
  153. 153.
    Young DY, Udvardi M (2009) Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol 12:193–201PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Adel M. Elmaghrabi
    • 1
    • 2
  • Hilary J. Rogers
    • 2
  • Dennis Francis
    • 2
  • Sergio Ochatt
    • 3
    Email author
  1. 1.Biotechnology Research Center (BTRC)TripoliLibya
  2. 2.School of BiosciencesCardiff UniversityCardiffUK
  3. 3.Agroécologie, AgroSup Dijon, INRAUniv. Bourgogne Franche-ComtéDijonFrance

Personalised recommendations