Functional Genomics and Seed Development in Medicago truncatula: An Overview

  • Christine Le Signor
  • Vanessa Vernoud
  • Mélanie Noguero
  • Karine Gallardo
  • Richard D. ThompsonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1822)


The study of seed development in the model species Medicago truncatula has made a significant contribution to our understanding of this process in crop legumes. Thanks to the availability of comprehensive proteomics and transcriptomics databases, coupled with exhaustive mutant collections, the roles of several regulatory genes in development and maturation are beginning to be deciphered and functionally validated. Advances in next-generation sequencing and the availability of a genomic sequence have made feasible high-density SNP genotyping, allowing the identification of markers tightly linked to traits of agronomic interest. A further major advance is to be expected from the integration of omics resources in functional network construction, which has been used recently to identify “hub” genes central to important traits.


Desiccation tolerance Longevity Globulin GWAS Network Dormancy Flavonoid AFL 


  1. 1.
    Barker D, Bianchi S, Blondon F, Dattée Y, Duc G, Essad S et al (1990) Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Rep 8:40–49. CrossRefGoogle Scholar
  2. 2.
    Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular-genetics. Plant J 2:487–496. CrossRefGoogle Scholar
  3. 3.
    Young ND, Debellé F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Djemel N, Guedon D, Lechevalier A, Salon C, Miquel M, Prosperi JM et al (2005) Development and composition of the seeds of nine genotypes of the Medicago truncatula species complex. Plant Physiol Biochem 43:557–566. CrossRefPubMedGoogle Scholar
  5. 5.
    Lesins K, Lesins I (1979) Genus Medicago: a taxogenetic study. W. Junk, The HagueCrossRefGoogle Scholar
  6. 6.
    Munier-Jolain NG, Ney B (1998) Seed growth rate in grain legumes II. Seed growth rate depends on cotyledon cell number. J Exp Bot 49:1971–1976. CrossRefGoogle Scholar
  7. 7.
    Verdier J, Dessaint F, Schneider C, Abirached-Darmency M (2013a) A combined histology and transcriptome analysis unravels novel questions on Medicago truncatula seed coat. J Exp Bot 64:459–470. CrossRefPubMedGoogle Scholar
  8. 8.
    Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133:664–682. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Watson BS, Asirvatham VS, Wang L, Sumner LW (2003) Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol 131:1104–1123. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gallardo K, Firnhaber C, Zuber H, Hericher D, Belghazi M, Henry C et al (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds: evidence for metabolic specialization of maternal and filial tissues. Mol Cell Proteomics 6:2165–2179. CrossRefPubMedGoogle Scholar
  11. 11.
    Gallardo K, Kurt C et al (2006) In vitro culture of immature M. truncatula grains under conditions permitting embryo development comparable to that observed in vivo. Plant Sci 170(6):1052–1058CrossRefGoogle Scholar
  12. 12.
    Repetto O, Rogniaux H et al (2008) Exploring the nuclear proteome of Medicago truncatula at the switch towards seed filling. Plant J 56(3):398–410CrossRefPubMedGoogle Scholar
  13. 13.
    Kuster H, Hohnjec N et al (2004) Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. J Biotechnol 108(2):95–113CrossRefPubMedGoogle Scholar
  14. 14.
    Firnhaber C, Puhler A et al (2005) EST sequencing and time course microarray hybridizations identify more than 700 Medicago truncatula genes with developmental expression regulation in flowers and pods. Planta 222(2):269–283CrossRefPubMedGoogle Scholar
  15. 15.
    Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K et al (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55:504–513. CrossRefPubMedGoogle Scholar
  16. 16.
    He J, Benedito VA, Wang M, Murray JD, Zhao PX, Tang Y et al (2009) The Medicago truncatula gene expression atlas web server. BMC Bioinform 10:441. CrossRefGoogle Scholar
  17. 17.
    Verdier J, Kakar K, Gallardo K, Le Signor C, Aubert G, Schlereth A et al (2008) Gene expression profiling of M-truncatula transcription factors identifies putative regulators of grain legume seed filling. Plant Mol Biol 67:567–580. CrossRefPubMedGoogle Scholar
  18. 18.
    Kurdyukov S, Song Y, Sheahan MB, Rose RJ (2014) Transcriptional regulation of early embryo development in the model legume Medicago truncatula. Plant Cell Rep 33:349–362. CrossRefPubMedGoogle Scholar
  19. 19.
    Terrasson E, Buitink J, Righetti K, Ly VB, Pelletier S, Zinsmeister J et al (2013) An emerging picture of the seed desiccome: confirmed regulators and newcomers identified using transcriptome comparison. Front Plant Sci 4:497. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bustos-Sanmamed P, Bazin J et al (2013) Small RNA pathways and diversity in model legumes: lessons from genomics. Front Plant Sci 4:236CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li J, Dai X, Liu T, Zhao PX (2012) LegumeIP: an integrative database for comparative genomics and transcriptomics of model legumes. Nucleic Acids Res 40:D1221–D1229. CrossRefPubMedGoogle Scholar
  23. 23.
    Verdier J, Lalanne D, Pelletier S, Torres-Jerez I, Righetti K, Bandyopadhyay K et al (2013) A regulatory network based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiol 163:757–774. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Righetti K, Vu JL et al (2015) Inference of longevity-related genes from a robust coexpression network of seed maturation identifies regulators linking seed storability to biotic defense-related pathways. Plant Cell 27(10):2692–2708PubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang M, Verdier J, Benedito VA, Tang Y, Murray JD, Ge Y et al (2013) LegumeGRN: a gene regulatory network prediction server for functional and comparative studies. PLoS One 8:e67434. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Thomas MR, Rose RJ, Nolan KE (1992) Genetic transformation of Medicago truncatula using Agrobacterium with genetically modified Ri and disarmed Ti plasmids. Plant Cell Rep 11:113–117. CrossRefPubMedGoogle Scholar
  27. 27.
    Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant-Microbe Interact 14:695–700. CrossRefPubMedGoogle Scholar
  28. 28.
    Le Signor C, Savois V, Aubert G, Verdier J, Nicolas M, Pagny G et al (2009) Optimizing TILLING populations for reverse genetics in Medicago truncatula. Plant Biotechnol J 7:430–441. CrossRefPubMedGoogle Scholar
  29. 29.
    Penmetsa RV, Cook DR (2000) Production and characterization of diverse developmental mutants of Medicago truncatula. Plant Physiol 123:1387–1398. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rogers C, Wen J, Chen R, Oldroyd G (2009) Deletion-based reverse genetics in Medicago truncatula. Plant Physiol 151:1077–1086. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cheng X, Wang M, Lee H, Tadege M, Ratet P, Udvardi M et al (2014) An efficient reverse genetics platform in the model legume Medicago truncatula. New Phytol 201:1065–1076. CrossRefPubMedGoogle Scholar
  32. 32.
    Tadege M, Ratet P, Mysore KS (2005) Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula. Trends Plant Sci 10:229–235. CrossRefPubMedGoogle Scholar
  33. 33.
    D’Erfurth I, Cosson V, Eschstruth A, Lucas H, Kondorosi A, Ratet P (2003) Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. Plant J 34:95–106. CrossRefPubMedGoogle Scholar
  34. 34.
    Jiang C, Chen C, Huang Z, Liu R, Verdier J (2015) ITIS, a bioinformatics tool for accurate identification of transposon insertion sites using next-generation sequencing data. BMC Bioinform 16(72):72. CrossRefGoogle Scholar
  35. 35.
    Porceddu A, Panara F, Calderini O, Molinari L, Taviani P, Lanfaloni L et al (2008) An Italian functional genomic resource for Medicago truncatula. BMC Res Notes 1:129. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Carelli M, Calderini O et al (2013) Reverse genetics in Medicago truncatula using a TILLING mutant collection. Methods Mol Biol 1069:101–118CrossRefPubMedGoogle Scholar
  37. 37.
    Iantcheva A, Vassileva V et al (2009) Development of functional genomic platform for model legume Medicago truncatula in Bulgaria. Biotechnol Biotechnol Equip 23(4):1440–1443CrossRefGoogle Scholar
  38. 38.
    Rakocevic A, Mondy S, Tirichine L, Cosson V, Brocard L, Iantcheva A et al (2009) MERE1, a low-copy-number copia-type retroelement in Medicago truncatula active during tissue culture. Plant Physiol 151:1250–1263. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Branca A, Paape TD et al (2011) Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc Natl Acad Sci U S A 108(42):E864–E870CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Le Signor C, Aimé D et al (2017) Genome-wide association studies with proteomics data reveal genes important for synthesis, transport and packaging of globulins in legume seeds. New Phytol 214:1597. CrossRefPubMedGoogle Scholar
  41. 41.
    Kang Y, Sakiroglu M, Krom N, Stanton-Geddes J, Wang M, Lee Y-C et al (2015) Genome-wide association of drought-related and biomass traits with HapMap SNPs in Medicago truncatula. Plant Cell Environ 38:1997–2011. CrossRefPubMedGoogle Scholar
  42. 42.
    Serrani-Yarce JC, Lee H-K, Tadege M, Ratet P, Mysore KS (2013) Forward genetics screening of Medicago truncatula Tnt1 insertion lines. Methods Mol Biol. Legume genomics 1069:93–100CrossRefGoogle Scholar
  43. 43.
    Kang Y, Li MY et al (2016) A snapshot of functional genetic studies in Medicago truncatula. Front Plant Sci 7:1175PubMedPubMedCentralGoogle Scholar
  44. 44.
    Ge L, Yu J, Wang H, Luth D, Bai G, Wang K, Chen R (2016) Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proc Natl Acad Sci U S A 113:12414–12419CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Noguero M, Le Signor C, Vernoud V, Bandyopadhyay K, Sanchez M, Fu C et al (2015) DASH transcription factor impacts Medicago truncatula seed size by its action on embryo morphogenesis and auxin homeostasis. Plant J 81:453–466. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    D’Erfurth I, Le Signor C, Aubert G, Sanchez M, Vernoud V, Darchy B et al (2012) A role for an endosperm-localized subtilase in the control of seed size in legumes. New Phytol 196:738–751. CrossRefPubMedGoogle Scholar
  47. 47.
    Fiume E, Fletcher JC (2012) Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8. Plant Cell 24(3):1000–1012CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Mantiri FR, Kurdyukov S et al (2008) The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus Cytokinin in Medicago truncatula. Plant Physiol 146(4):1622–1636CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Fatihi A, Boulard C et al (2016) Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds. Plant Sci 250:198–204CrossRefPubMedGoogle Scholar
  50. 50.
    Baud S, Kelemen Z et al (2016) Deciphering the molecular mechanisms underpinning the transcriptional control of gene expression by master transcriptional regulators in Arabidopsis seed. Plant Physiol 171(2):1099–1112PubMedPubMedCentralGoogle Scholar
  51. 51.
    Carbonero P, Iglesias-Fernandez R et al (2017) The AFL subfamily of B3 transcription factors: evolution and function in angiosperm seeds. J Exp Bot 68(4):871–880PubMedGoogle Scholar
  52. 52.
    Lara P, Oñate-Sánchez L et al (2003) Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2. J Biol Chem 278(23):21003–21011CrossRefPubMedGoogle Scholar
  53. 53.
    Chen S-K, Kurdyukov S et al (2009) The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula. Planta 230(4):827–840CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Curaba J, Moritz T et al (2004) AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiol 136(3):3660–3669CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Stone SL, Braybrook SA et al (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci U S A 105(8):3151–3156CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    D’Hooghe P, Dubousset L, Gallardo K, Kopriva S, Avice J-C, Trouverie J (2014) Evidence for proteomic and metabolic adaptations associated to alterations of seed yield and quality in Sulphur-limited Brassica napus L. Mol Cell Proteomics 13:1165–1183CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Vandecasteele C, Teulat-Merah B et al (2011) Quantitative trait loci analysis reveals a correlation between the ratio of sucrose/raffinose family oligosaccharides and seed vigour in Medicago truncatula. Plant Cell Environ 34(9):1473–1487CrossRefPubMedGoogle Scholar
  58. 58.
    Leprince O, Pellizzaro A et al (2017) Late seed maturation: drying without dying. J Exp Bot 68(4):827–841PubMedGoogle Scholar
  59. 59.
    Smoot ME, Ono K et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432CrossRefPubMedGoogle Scholar
  60. 60.
    Bies-Etheve N, Gaubier-Comella P et al (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67(1–2):107–124CrossRefPubMedGoogle Scholar
  61. 61.
    Kotak S, Vierling E, Bäumlein H, von Koskull-Döring P (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19:182–195CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    González-Morales SI, Chávez-Montes RA et al (2016) Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana. Proc Natl Acad Sci U S A 113(35):E5232–E5241CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484CrossRefPubMedGoogle Scholar
  64. 64.
    Cairns NG, Pasternak M, Wachter A, Cobbett CS, Meyer AJ (2006) Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol 141:446–455CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Oliver MJ, Guo L, Alexander DC, Ryals JA, Wone BWM, Cushman JC (2011) A sister group contrast using untargeted global metabolomics analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell 23:1231–1248CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lepiniec L, Debeaujon I et al (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430CrossRefPubMedGoogle Scholar
  67. 67.
    Peel GJ, Pang YZ et al (2009) The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. Plant J 59(1):136–149CrossRefPubMedGoogle Scholar
  68. 68.
    Verdier J, Zhao J et al (2012) MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proc Natl Acad Sci U S A 109(5):1766–1771CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Liu CG, Jun JH et al (2014) MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiol 165(4):1424–1439CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Li PH, Chen BB et al (2016) Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. New Phytol 210(3):905–921CrossRefPubMedGoogle Scholar
  71. 71.
    Jun JH, Liu CG et al (2015) The transcriptional repressor MYB2 regulates both spatial and temporal patterns of proanthocyandin and anthocyanin pigmentation in Medicago truncatula. Plant Cell 27(10):2860–2879PubMedPubMedCentralGoogle Scholar
  72. 72.
    Pang YZ, Cheng XF et al (2013) Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis. Planta 238(1):139–154CrossRefPubMedGoogle Scholar
  73. 73.
    Zhao J, Dixon RA (2009) MATE transporters facilitate vacuolar uptake of Epicatechin 3′-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 21(8):2323–2340CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Zhao J, Huhman D et al (2011) MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell 23(4):1536–1555CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Li DF, Zhang YQ et al (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Arraouadi S, Badri M et al (2012) QTL mapping of physiological traits associated with salt tolerance in Medicago truncatula recombinant inbred lines. Genomics 99(2):118–125CrossRefPubMedGoogle Scholar
  77. 77.
    Yoder JB, Stanton-Geddes J et al (2014) Genomic signature of adaptation to climate in Medicago truncatula. Genetics 196(4):1263CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Badri M, Bouhaouel I et al (2016) Variation in tolerance to drought among Tunisian populations of Medicago truncatula. Plant Genet Resour 14(1):41–49CrossRefGoogle Scholar
  79. 79.
    Zhang JY, Cruz DE, Carvalho MH, Torres-Jerez I, Kang Y, Allen SN, Huhman DV et al (2014) Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering. Plant Cell Environ 37:2553–2576. CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Tejedor-Cano J, Prieto-Dapena P et al (2010) Loss of function of the HSFA9 seed longevity program. Plant Cell Environ 33(8):1408–1417PubMedGoogle Scholar
  81. 81.
    Terrasson E, Darrasse A et al (2015) Identification of a molecular dialogue between developing seeds of Medicago truncatula and seedborne xanthomonads. J Exp Bot 66(13):3737–3752CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Christine Le Signor
    • 1
  • Vanessa Vernoud
    • 1
  • Mélanie Noguero
    • 1
  • Karine Gallardo
    • 1
  • Richard D. Thompson
    • 1
    Email author
  1. 1.Agroécologie, AgroSup DijonINRA, Univ. Bourgogne Franche-ComtéF-21000 DijonFrance

Personalised recommendations