Mouse Model of Wire Injury-Induced Vascular Remodeling

  • Aya Nomura-Kitabayashi
  • Jason C. Kovacic
Part of the Methods in Molecular Biology book series (MIMB, volume 1816)


We introduced the vascular remodeling mouse system induced by the wire injury to investigate the molecular and cellular mechanisms of cardiovascular diseases. Using these models, we focus on the adventitial cell population in the outermost layer of the adult vasculature as a vascular progenitor niche. Firstly we used the standard wire injury approach, leaving the wire for 1 min in the artery and retracting the wire by twisting out to expand the artery and denude the inner layer endothelial cells in the both peripheral artery and femoral artery. This method leads to adventitial lineage cell accumulation on the medial–adventitial border, but no contribution into the hyperplastic neointima. Since advanced atherosclerotic plaques in the mouse models and human clinical specimens show the elastic lamina in the media broken, we hypothesized that adventitial lineage cells contribute to acute neointima formation induced by the mechanical damage in both endothelial and medial layers. To make this intensive damage, next, we used the bigger diameter wire with no hydrophilic coating and repeated the ten-times insertion and retraction of the wire after leaving for 1 min in the femoral artery. The additional ten-times intensive movements of the wire lead to breakdown and rupture of the elastic lamina together with a contribution of adventitial lineage cells to the hyperplastic neointima. Here we describe these two different wire injury methods to induce different types of vascular remodeling at the point of adventitial lineage cell contribution to the hyperplastic neointima by targeting two separate locations of hind limb artery, the peripheral artery and femoral artery, and using two different diameter wires.

Key words

Mouse Angioplasty Femoral artery Peripheral artery Wire injury Endothelial cell denudation Neointima hyperplasia Adventitial lineage cells 



We thank Microscope Core for the confocal microscope support and CCMS for the mouse husbandry care (Icahn School of Med at MSSM). We thank D. Yang (Icahn School of Med at MSSM) for the initial technical introduction and S. Hong (NHGRI) for the initial technical training of peripheral artery wire injury. We are grateful to Professor M. Sata (Tokushima Univ.) who established femoral artery wire injury technique originally for sharing information, and H. Kato (Tokyo Univ.) for the technical advice.


  1. 1.
    Collins MJ, Li X, Lv W et al (2012) Therapeutic strategies to combat neointimal hyperplasia in vascular grafts. Expert Rev Cardiovasc Ther 10:635–647CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    de Vries MR, Simons KH, Jukema JW et al (2016) Vein graft failure: from pathophysiology to clinical outcomes. Nat Rev Cardiol 13:451–470CrossRefPubMedGoogle Scholar
  3. 3.
    Komiyama H, Takano M, Hata N et al (2015) Neoatherosclerosis: Coronary stents seal atherosclerotic lesions but result in making a new problem of atherosclerosis. World J Cardiol 7:776–783CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yahagi K, Kolodgie FD, Otsuka F et al (2016) Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol 13:79–98CrossRefPubMedGoogle Scholar
  5. 5.
    Sata M (2016) Mouse models of vascular diseases. Springer, TokyoCrossRefGoogle Scholar
  6. 6.
    Sata M, Maejima Y, Adachi F et al (2000) A mouse model of vascular injury that induces rapid onset of medial cell apoptosis followed by reproducible neointimal hyperplasia. J Mol Cell Cardiol 32:2097–2104CrossRefPubMedGoogle Scholar
  7. 7.
    Sata M, Saiura A, Kunisato A et al (2002) Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8:403–409CrossRefPubMedGoogle Scholar
  8. 8.
    Passman JN, Dong XR, Wu SP et al (2008) A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc Natl Acad Sci U S A 105:9349–9354CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kramann R, Schneider RK, DiRocco DP et al (2015) Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66CrossRefPubMedGoogle Scholar
  10. 10.
    Kramann R, Goettsch C, Wongboonsin J et al (2016) Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease. Cell Stem Cell 19:628–642CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Li C, Zhen G, Chai Y et al (2016) RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix. Nat Commun 7:11455CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yu B, Wong MM, Potter CM et al (2016) Vascular stem/progenitor cell migration induced by smooth muscle cell-derived chemokine (C-C Motif) ligand 2 and chemokine (C-X-C motif) ligand 1 contributes to neointima formation. Stem Cells 34:2368–2380CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhu Y, Takayama T, Wang B et al (2017) Restenosis inhibition and re-differentiation of TGFbeta/Smad3-activated smooth muscle cells by resveratrol. Sci Rep 7:41916CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Le V, Johnson CG, Lee JD et al (2015) Murine model of femoral artery wire injury with implantation of a perivascular drug delivery patch. J Vis Exp e52403:1–7Google Scholar
  15. 15.
    Takayama T, Shi X, Wang B et al (2015) A murine model of arterial restenosis: technical aspects of femoral wire injury. J Vis Exp e52561:1–6Google Scholar
  16. 16.
    Duckers HJ, Boehm M, True AL et al (2001) Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med 7:693–698CrossRefPubMedGoogle Scholar
  17. 17.
    Kochi T, Imai Y, Takeda A et al (2013) Characterization of the arterial anatomy of the murine hindlimb: functional role in the design and understanding of ischemia models. PLoS One 8:e84047CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Aya Nomura-Kitabayashi
    • 1
  • Jason C. Kovacic
    • 1
  1. 1.Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations