Methods to Study TCDD-Inducible Poly-ADP-Ribose Polymerase (TIPARP) Mono-ADP-Ribosyltransferase Activity

  • David Hutin
  • Giulia Grimaldi
  • Jason MatthewsEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1813)


TCDD-inducible poly-ADP-ribose polymerase (TIPARP; also known as PARP7 and ARTD14) is a mono-ADP-ribosyltransferase that has emerged as an important regulator of innate immunity, stem cell pluripotency, and transcription factor regulation. Characterizing TIPARP’s catalytic activity and identifying its target proteins are critical to understanding its cellular function. Here we describe methods that we use to characterize TIPARP catalytic activity and its mono-ADP-ribosylation of its target proteins.

Key words

Immunoprecipitation TCDD-inducible poly-ADP-ribose polymerase (TIPARP) Protein purification Biotinylated-NAD+ 32P-NAD+ 


  1. 1.
    Welsby I, Hutin D, Leo O (2012) Complex roles of members of the ADP-ribosyl transferase super family in immune defences: looking beyond PARP1. Biochem Pharmacol 84(1):11–20. CrossRefPubMedGoogle Scholar
  2. 2.
    Feijs KL, Verheugd P, Luscher B (2013) Expanding functions of intracellular resident mono-ADP-ribosylation in cell physiology. FEBS J 280(15):3519–3529. CrossRefPubMedGoogle Scholar
  3. 3.
    Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT, Ahel I, Chang P (2014) Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun 5:4426. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219. CrossRefPubMedGoogle Scholar
  5. 5.
    Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39(1):8–24. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vyas S, Chang P (2014) New PARP targets for cancer therapy. Nat Rev Cancer 14(7):502–509. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rosenthal F, Feijs KL, Frugier E, Bonalli M, Forst AH, Imhof R, Winkler HC, Fischer D, Caflisch A, Hassa PO, Luscher B, Hottiger MO (2013) Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol 20(4):502–507. CrossRefPubMedGoogle Scholar
  8. 8.
    Feijs KL, Kleine H, Braczynski A, Forst AH, Herzog N, Verheugd P, Linzen U, Kremmer E, Luscher B (2013) ARTD10 substrate identification on protein microarrays: regulation of GSK3beta by mono-ADP-ribosylation. Cell Commun Signal 11(1):5. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    MacPherson L, Tamblyn L, Rajendra S, Bralha F, McPherson JP, Matthews J (2013) 2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation. Nucleic Acids Res 41(3):1604–1621. CrossRefPubMedGoogle Scholar
  10. 10.
    Ma Q, Baldwin KT, Renzelli AJ, McDaniel A, Dong L (2001) TCDD-inducible poly(ADP-ribose) polymerase: a novel response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem Biophys Res Commun 289(2):499–506CrossRefGoogle Scholar
  11. 11.
    Vyas S, Chesarone-Cataldo M, Todorova T, Huang YH, Chang P (2013) A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nat Commun 4:2240. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ahmed S, Bott D, Gomez A, Tamblyn L, Rasheed A, MacPherson L, Sugamori KS, Cho T, Yang Y, Grant DM, Cummins CL, Matthews J (2015) Loss of the mono-ADP-ribosyltransferase, TIPARP, increases sensitivity to dioxin-induced steatohepatitis and lethality. J Biol Chem 290(27):16824–16840. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Roper SJ, Chrysanthou S, Senner CE, Sienerth A, Gnan S, Murray A, Masutani M, Latos P, Hemberger M (2014) ADP-ribosyltransferases Parp1 and Parp7 safeguard pluripotency of ES cells. Nucleic Acids Res 42(14):8914–8927. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yamada T, Horimoto H, Kameyama T, Hayakawa S, Yamato H, Dazai M, Takada A, Kida H, Bott D, Zhou AC, Hutin D, Watts TH, Asaka M, Matthews J, Takaoka A (2016) Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense. Nat Immunol 17(6):687–694. CrossRefPubMedGoogle Scholar
  15. 15.
    Bolton EC, So AY, Chaivorapol C, Haqq CM, Li H, Yamamoto KR (2007) Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 21(16):2005–2017CrossRefGoogle Scholar
  16. 16.
    Dave KA, Whelan F, Bindloss C, Furness SG, Chapman-Smith A, Whitelaw ML, Gorman JJ (2009) Sulfonation and phosphorylation of regions of the dioxin receptor susceptible to methionine modifications. Mol Cell Proteomics 8(4):706–719. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen WV, Delrow J, Corrin PD, Frazier JP, Soriano P (2004) Identification and validation of PDGF transcriptional targets by microarray-coupled gene-trap mutagenesis. Nat Genet 36(3):304–312CrossRefGoogle Scholar
  18. 18.
    Atasheva S, Akhrymuk M, Frolova EI, Frolov I (2012) New PARP gene with an anti-alphavirus function. J Virol 86(15):8147–8160. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada
  2. 2.Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway

Personalised recommendations