Advertisement

In Vitro Techniques for ADP-Ribosylated Substrate Identification

  • Giovanna Grimaldi
  • Giuliana Catara
  • Carmen Valente
  • Daniela Corda
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1813)

Abstract

ADP-ribosylation is a post-translational modification of proteins that has required the development of specific technical approaches for the full definition of its physiological roles and regulation. The identification of the enzymes and specific substrates of this reaction is an instrumental step toward these aims. Here we describe a method for the separation of ADP-ribosylated proteins based on the use of the ADP-ribose-binding macro domain of the thermophilic protein Af1521, coupled to mass spectrometry analysis for protein identification. This method foresees the coupling of the macro domain to resin, an affinity-based pull-down assay, coupled to a specificity step resulting from the clearing of cell lysates with a mutated macro domain unable to bind ADP-ribose. By this method both mono- and poly-ADP-ribosylated proteins have been identified.

Key words

ADP-ribosylation Macro domain Af1521 macro-domain purification DMP cross-linker Macro-domain-based pulldown PARP ART ADP-ribosylated substrates ADP-ribose PAR 

Notes

Acknowledgments

This study was supported by the Italian Association for Cancer Research (AIRC, Milan, Italy, IG10341 and 14675 to D.C.), TRansforming IDEas in Oncological research award (TRIDEO, AIRC-Fondazione Cariplo, Milan, Italy, IG17524 to C.V.), the PNR-CNR Aging Program, the Flag project Nanomax, and the POR project OcKey. G.G. received a fellowship from the Italian Foundation for Cancer Research (FIRC, Milan, Italy).

References

  1. 1.
    Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7(6):391–403CrossRefPubMedGoogle Scholar
  2. 2.
    Corda D, Di Girolamo M (2003) Functional aspects of protein mono-ADP-ribosylation. EMBO J 22(9):1953–1958CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hottiger MO (2015) Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu Rev Biochem 84:227–263CrossRefPubMedGoogle Scholar
  4. 4.
    Dani N et al (2009) Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome. Proc Natl Acad Sci U S A 106(11):4243–4248CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219CrossRefPubMedGoogle Scholar
  6. 6.
    Kawamitsu H et al (1984) Monoclonal antibodies to poly(adenosine diphosphate ribose) recognize different structures. Biochemistry 23(16):3771–3777CrossRefPubMedGoogle Scholar
  7. 7.
    Gagne JP et al (2008) Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res 36(22):6959–6976CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gagne JP et al (2012) Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress. Nucleic Acids Res 40(16):7788–7805CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Isabelle M, Gagne JP, Gallouzi IE, Poirier GG (2012) Quantitative proteomics and dynamic imaging reveal that G3BP-mediated stress granule assembly is poly(ADP-ribose)-dependent following exposure to MNNG-induced DNA alkylation. J Cell Sci 125(Pt 19):4555–4566CrossRefPubMedGoogle Scholar
  10. 10.
    Eide B, Gierschik P, Spiegel A (1986) Immunochemical detection of guanine nucleotide binding proteins mono-ADP-ribosylated by bacterial toxins. Biochemistry 25(21):6711–6715CrossRefPubMedGoogle Scholar
  11. 11.
    Meyer T, Hilz H (1986) Production of anti-(ADP-ribose) antibodies with the aid of a dinucleotide-pyrophosphatase-resistant hapten and their application for the detection of mono(ADP-ribosyl)ated polypeptides. Eur J Biochem 155(1):157–165—CrossRefPubMedGoogle Scholar
  12. 12.
    Osago H, Terashima M, Hara N, Yamada K, Tsuchiya M (2008) A new detection method for arginine-specific ADP-ribosylation of protein—a combinational use of anti-ADP-ribosylarginine antibody and ADP-ribosylarginine hydrolase. J Biochem Biophys Methods 70(6):1014–1019CrossRefPubMedGoogle Scholar
  13. 13.
    Schwab CJ, Colville MJ, Fullerton AT, McMahon KK (2000) Evidence of endogenous mono-ADP-ribosylation of cardiac proteins via anti-ADP-ribosylarginine immunoreactivity. Proc Soc Exp Biol Med 223(4):389–396CrossRefPubMedGoogle Scholar
  14. 14.
    Karras GI et al (2005) The macro domain is an ADP-ribose binding module. EMBO J 24(11):1911–1920CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Slade D et al (2011) The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477(7366):616–620CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang Z, Gagne JP, Poirier GG, Xu W (2014) Crystallographic and biochemical analysis of the mouse poly(ADP-ribose) glycohydrolase. PLoS One 9(1):e86010CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Forst AH et al (2013) Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains. Structure 21(3):462–475CrossRefPubMedGoogle Scholar
  18. 18.
    Timinszky G et al (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16(9):923–929CrossRefPubMedGoogle Scholar
  19. 19.
    Wang Z et al (2012) Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev 26(3):235–240CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bartolomei G, Leutert M, Manzo M, Baubec T, Hottiger MO (2016) Analysis of chromatin ADP-ribosylation at the genome-wide level and at specific loci by ADPr-ChAP. Mol Cell 61(3):474–485CrossRefPubMedGoogle Scholar
  21. 21.
    Jungmichel S et al (2013) Proteome-wide identification of poly(ADP-ribosyl)ation targets in different genotoxic stress responses. Mol Cell 52(2):272–285CrossRefPubMedGoogle Scholar
  22. 22.
    Bilan V et al (2017) New quantitative mass spectrometry approaches reveal different ADP-ribosylation phases dependent on the levels of oxidative stress. Mol Cell Proteomics 16(5):949–958CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jankevicius G et al (2013) A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol 20(4):508–514CrossRefPubMedGoogle Scholar
  24. 24.
    Rosenthal F et al (2013) Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol 20(4):502–507CrossRefPubMedGoogle Scholar
  25. 25.
    Larsen SC et al (2017) Proteome-wide identification of in vivo ADP-ribose acceptor sites by liquid chromatography-tandem mass spectrometry. Methods Mol Biol 1608:149–162CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Giovanna Grimaldi
    • 1
  • Giuliana Catara
    • 1
  • Carmen Valente
    • 1
  • Daniela Corda
    • 1
  1. 1.Institute of Protein BiochemistryNational Research CouncilNaplesItaly

Personalised recommendations