Advertisement

Hydrolysis of ADP-Ribosylation by Macrodomains

  • Melanija Posavec Marjanovic´
  • Gytis Jankevicius
  • Ivan Ahel
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1813)

Abstract

ADP-ribosylation is the process of transferring the ADP-ribose moiety from NAD+ to a substrate. While a number of proteins represent well described substrates accepting ADP-ribose modification, a recent report demonstrated biological role for DNA ADP-ribosylation as well. The conserved macrodomain fold of several known hydrolyses was found to possess de-ADP-ribosylating activity and the ability to hydrolyze (reverse) ADP-ribosylation. Here we summarize the methods that can be employed to study mono-ADP-ribosylation hydrolysis by macrodomains.

Key words

Macrodomain fold ADP-ribosylation Hydrolysis Toxin-antitoxin system NAD+ 

Notes

Acknowledgments

The work in Ahel lab is supported by Wellcome Trust (grant number 101794), the European Research Council (grant number 281739) and by Cancer Research UK (grant number C35050/A22284). MPM is financed by Croatian National Centre of Research Excellence in Personalized Healthcare grant.

References

  1. 1.
    Alvarez-Gonzalez R, Althaus FR (1989) Poly(ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents. Mutat Res 218(2):67–74CrossRefPubMedGoogle Scholar
  2. 2.
    Barkauskaite E, Jankevicius G, Ahel I (2015) Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol Cell 58(6):935–946. https://doi.org/10.1016/j.molcel.2015.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Canto C, Menzies KJ, Auwerx J (2015) NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22(1):31–53. https://doi.org/10.1016/j.cmet.2015.05.023 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hottiger MO (2015) Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu Rev Biochem 84:227–263. https://doi.org/10.1146/annurev-biochem-060614-034506 CrossRefPubMedGoogle Scholar
  5. 5.
    Lin W, Ame JC, Aboul-Ela N, Jacobson EL, Jacobson MK (1997) Isolation and characterization of the cDNA encoding bovine poly(ADP-ribose) glycohydrolase. J Biol Chem 272(18):11895–11901CrossRefPubMedGoogle Scholar
  6. 6.
    Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, Dixon N, Ahel M, Leys D, Ahel I (2011) The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477(7366):616–620. https://doi.org/10.1038/nature10404 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Moss J, Stanley SJ, Nightingale MS, Murtagh JJ Jr, Monaco L, Mishima K, Chen HC, Williamson KC, Tsai SC (1992) Molecular and immunological characterization of ADP-ribosylarginine hydrolases. J Biol Chem 267(15):10481–10488PubMedGoogle Scholar
  8. 8.
    Oka S, Kato J, Moss J (2006) Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J Biol Chem 281(2):705–713. https://doi.org/10.1074/jbc.M510290200 CrossRefPubMedGoogle Scholar
  9. 9.
    Fontana P, Bonfiglio JJ, Palazzo L, Bartlett E, Matic I, Ahel I (2017) Serine ADP-ribosylation reversal by the hydrolase ARH3. Elife 6. pii: e28533. https://doi.org/10.7554/eLife.28533
  10. 10.
    Sharifi R, Morra R, Appel CD, Tallis M, Chioza B, Jankevicius G, Simpson MA, Matic I, Ozkan E, Golia B, Schellenberg MJ, Weston R, Williams JG, Rossi MN, Galehdari H, Krahn J, Wan A, Trembath RC, Crosby AH, Ahel D, Hay R, Ladurner AG, Timinszky G, Williams RS, Ahel I (2013) Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J 32(9):1225–1237. https://doi.org/10.1038/emboj.2013.51 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M, Timinszky G, Ladurner AG (2013) A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol 20(4):508–514. https://doi.org/10.1038/nsmb.2523 CrossRefPubMedGoogle Scholar
  12. 12.
    Rosenthal F, Feijs KL, Frugier E, Bonalli M, Forst AH, Imhof R, Winkler HC, Fischer D, Caflisch A, Hassa PO, Luscher B, Hottiger MO (2013) Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol 20(4):502–507. https://doi.org/10.1038/nsmb.2521 CrossRefPubMedGoogle Scholar
  13. 13.
    Palazzo L, Thomas B, Jemth AS, Colby T, Leidecker O, Feijs KL, Zaja R, Loseva O, Puigvert JC, Matic I, Helleday T, Ahel I (2015) Processing of protein ADP-ribosylation by Nudix hydrolases. Biochem J 468(2):293–301. https://doi.org/10.1042/BJ20141554 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Palazzo L, Daniels CM, Nettleship JE, Rahman N, McPherson RL, Ong SE, Kato K, Nureki O, Leung AK, Ahel I (2016) ENPP1 processes protein ADP-ribosylation in vitro. FEBS J 283(18):3371–3388. https://doi.org/10.1111/febs.13811 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Palazzo L, Mikoc A, Ahel I (2017) ADP-ribosylation: new facets of an ancient modification. FEBS J 84(18):2932–2946. https://doi.org/10.1111/febs.14078 CrossRefGoogle Scholar
  16. 16.
    Rack JG, Perina D, Ahel I (2016) Macrodomains: structure, function, evolution, and catalytic activities. Annu Rev Biochem 85:431–454. https://doi.org/10.1146/annurev-biochem-060815-014935 CrossRefPubMedGoogle Scholar
  17. 17.
    Kustatscher G, Hothorn M, Pugieux C, Scheffzek K, Ladurner AG (2005) Splicing regulates NAD metabolite binding to histone macroH2A. Nat Struct Mol Biol 12(7):624–625CrossRefPubMedGoogle Scholar
  18. 18.
    de Souza RF, Aravind L (2012) Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. Mol Biosyst 8(6):1661–1677. https://doi.org/10.1039/c2mb05487f CrossRefPubMedGoogle Scholar
  19. 19.
    Jankevicius G, Ariza A, Ahel M, Ahel I (2016) The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA. Mol Cell 64(6):1109–1116. https://doi.org/10.1016/j.molcel.2016.11.014 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Langelier MF, Planck JL, Roy S, Pascal JM (2012) Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 336(6082):728–732. https://doi.org/10.1126/science.1216338 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kleine H, Poreba E, Lesniewicz K, Hassa PO, Hottiger MO, Litchfield DW, Shilton BH, Luscher B (2008) Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol Cell 32(1):57–69. https://doi.org/10.1016/j.molcel.2008.08.009 CrossRefPubMedGoogle Scholar
  22. 22.
    Clark NJ, Kramer M, Muthurajan UM, Luger K (2012) Alternative modes of binding of poly(ADP-ribose) polymerase 1 to free DNA and nucleosomes. J Biol Chem 287(39):32430–32439. https://doi.org/10.1074/jbc.M112.397067 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Melanija Posavec Marjanovic´
    • 1
  • Gytis Jankevicius
    • 2
  • Ivan Ahel
    • 2
  1. 1.University of ZagrebZagrebCroatia
  2. 2.Sir William Dunn School of PathologyUniversity of OxfordOxfordUK

Personalised recommendations