Differentiation of Human Pluripotent Stem Cells to Megakaryocytes by Transcription Factor-Driven Forward Programming

  • Thomas MoreauEmail author
  • Amanda L. Evans
  • Cedric J. G. GhevaertEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1812)


The differentiation of megakaryocytes from human pluripotent stem cells in vitro offers intriguing new perspectives for research and transfusion medicine. However, applications have been hampered by the low efficiency of cytokine driven differentiation protocols leading to poor megakaryocyte purity and yield. Here we describe a novel forward programming approach relying on the combined ectopic expression of the three transcription factors GATA1, FLI1, and TAL1 in human pluripotent stem cells for large scale production of mature megakaryocytes using chemically defined culture and minimum cytokines.

Key words

Human pluripotent stem cells Megakaryocytes Transcription factors Forward programming Transfusion medicine 



This work was supported by NIHR, NHSBT, MRC grants and a core support grant from the Wellcome Trust and MRC to the Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute.

Supplementary material

Supplementary video 1:

(MP4 46556 kb)


  1. 1.
    Rossant J, Tam PP (2017) New insights into early human development: lessons for stem cell derivation and differentiation. Cell Stem Cell 20(1):18–28. CrossRefPubMedGoogle Scholar
  2. 2.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wu SM, Hochedlinger K (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13(5):497–505. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gaur M, Kamata T, Wang S, Moran B, Shattil SJ, Leavitt AD (2006) Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function. J Thromb Haemost 4(2):436–442. CrossRefPubMedGoogle Scholar
  5. 5.
    Takayama N, Eto K (2012) Pluripotent stem cells reveal the developmental biology of human megakaryocytes and provide a source of platelets for clinical application. Cell Mol Life Sci.
  6. 6.
    Nakamura S, Takayama N, Hirata S, Seo H, Endo H, Ochi K, Fujita K, Koike T, Harimoto K, Dohda T, Watanabe A, Okita K, Takahashi N, Sawaguchi A, Yamanaka S, Nakauchi H, Nishimura S, Eto K (2014) Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell 14(4):535–548. CrossRefPubMedGoogle Scholar
  7. 7.
    Feng Q, Shabrani N, Thon JN, Huo H, Thiel A, Machlus KR, Kim K, Brooks J, Li F, Luo C, Kimbrel EA, Wang J, Kim KS, Italiano J, Cho J, Lu SJ, Lanza R (2014) Scalable generation of universal platelets from human induced pluripotent stem cells. Stem Cell Rep 3(5):817–831. CrossRefGoogle Scholar
  8. 8.
    Pick M, Azzola L, Osborne E, Stanley EG, Elefanty AG (2013) Generation of megakaryocytic progenitors from human embryonic stem cells in a feeder- and serum-free medium. PLoS One 8(2):e55530. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Moreau T, Evans AL, Vasquez L, Tijssen MR, Yan Y, Trotter MW, Howard D, Colzani M, Arumugam M, Wu WH, Dalby A, Lampela R, Bouet G, Hobbs CM, Pask DC, Payne H, Ponomaryov T, Brill A, Soranzo N, Ouwehand WH, Pedersen RA, Ghevaert C (2016) Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat Commun 7:11208. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Heazlewood SY, Nilsson SK, Cartledge K, Be CL, Vinson A, Gel M, Haylock DN (2017) Progress in bio-manufacture of platelets for transfusion. Platelets 28(7):649–656. CrossRefPubMedGoogle Scholar
  11. 11.
    Cahan P, Daley GQ (2013) Origins and implications of pluripotent stem cell variability and heterogeneity. Nat Rev Mol Cell Biol.
  12. 12.
    Rouhani F, Kumasaka N, de Brito MC, Bradley A, Vallier L, Gaffney D (2014) Genetic background drives transcriptional variation in human induced pluripotent stem cells. PLoS Genet 10(6):e1004432. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8(5):424–429. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bernardo AS, Faial T, Gardner L, Niakan KK, Ortmann D, Senner CE, Callery EM, Trotter MW, Hemberger M, Smith JC, Bardwell L, Moffett A, Pedersen RA (2011) BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell 9(2):144–155. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Haematology, Wellcome Trust – Medical Research Council Cambridge Stem Cell InstituteNHS Blood and Transplant, Long Road, University of CambridgeCambridgeUK

Personalised recommendations