Advertisement

Translingual Neurostimulation (TLNS): Perspective on a Novel Approach to Neurorehabilitation after Brain Injury

  • Yuri Danilov
  • Dafna Paltin
Protocol
Part of the Neuromethods book series (NM, volume 139)

Abstract

CN-NINM technology represents a synthesis of a new noninvasive brain stimulation technique with applications in physical medicine, cognitive, and affective neurosciences. Our new stimulation method appears promising for the treatment of a full spectrum of movement disorders and for both attention and memory dysfunction associated with traumatic brain injury. The integrated CN-NINM therapy proposed here aims to restore function beyond traditionally expected limits by employing both newly developed therapeutic mechanisms for progressive physical and cognitive training while simultaneously applying brain stimulation through a portable neurostimulation device called the PoNS™. Based on our previous research and recent pilot data, we believe a rigorous in-clinic CN-NINM training program, followed by regular at-home exercises that will also be performed with CN-NINM, will simultaneously enhance, accelerate, and extend recovery from multiple impairments (e.g. movement, vision, speech, memory, attention, and mood), based on divergent but deeply interconnected neurophysiological mechanisms of neuroplasticity.

Key words

Neurorehabilitation Neuromodulation Translingual neurostimulation PoNS device Targeted therapy Cranial nerve Neuroplasticity 

Abbreviations

CN-NINM

Cranial-nerve noninvasive neurostimulation

MS

Multiple sclerosis

TBI

Traumatic brain injury

TLNS

Translingual neurostimulation

TNS

Trigeminal nerve stimulation

VNS

Vagal nerve stimulation

Notes

Acknowledgments

This research is made possible by the additional efforts of Mitchell Tyler, Kim Skinner, Kurt Kaczmareck, Jannet Ruhland, and Georgia Corner.

Disclosure

The lead author has a financial interest in Advanced NeuroRehabilitation LLC and in Helius Medical Technologies, which both have intellectual property rights in the field of use reported in this article.

References

  1. 1.
    Danilov Y, Kaczmarek K, Skinner K, Tyler M (2015) Cranial nerve noninvasive neuromodulation: new approach to neurorehabilitation. In: Kobeissy FH (ed) Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. CRC, Boca Raton, pp 605–628CrossRefGoogle Scholar
  2. 2.
    Tyler ME, Kaczmarek KA, Rust KL, Subbotin AM, Skinner KL, Danilov YP (2014) Non-invasive neuromodulation to improve gait in chronic multiple sclerosis: a randomized double blind controlled pilot trial. J Neuroeng Rehabil 11(1):79PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Filippi M, van den Heuvel MP, Fornito A, He Y, Pol HEH, Agosta F et al (2013) Assessment of system dysfunction in the brain through MRI-based connectomics. Lancet Neurol 12(12):1189–1199PubMedCrossRefGoogle Scholar
  4. 4.
    Pol HH, Bullmore E (2013) Neural networks in psychiatry. Eur Neuropsychopharmacol 23(1):1–6CrossRefGoogle Scholar
  5. 5.
    Stam CJ (2014) Modern network science of neurological disorders. Nat Rev Neurosci 15(10):683–695PubMedCrossRefGoogle Scholar
  6. 6.
    Ghulyan-Bedikian V, Paolino M, Paolino F (2013) Short-term retention effect of rehabilitation using head position-based electrotactile feedback to the tongue: influence of vestibular loss and old-age. Gait Posture 38(4):777–783PubMedCrossRefGoogle Scholar
  7. 7.
    Robinson BS, Cook JL, Richburg CM, Price SE (2009) Use of an electrotactile vestibular substitution system to facilitate balance and gait of an individual with gentamicin-induced bilateral vestibular hypofunction and bilateral transtibial amputation. J Neurol Phys Ther 33(3):150–159PubMedCrossRefGoogle Scholar
  8. 8.
    Tyler M, Danilov Y, Bach-Y-Rita P (2003 Dec) Closing an open-loop control system: vestibular substitution through the tongue. J Integr Neurosci 2(2):159–164PubMedCrossRefGoogle Scholar
  9. 9.
    Harbourne R, Becker K, Arpin DJ, Wilson TW, Kurz MJ (2014) Improving the motor skill of children with posterior fossa syndrome: a case series. Pediatr Phys Ther 26(4):462–468PubMedCrossRefGoogle Scholar
  10. 10.
    Kublanov VS (2008) A hardware-software system for diagnosis and correction of autonomic dysfunctions. Biomed Eng 42(4):206–212CrossRefGoogle Scholar
  11. 11.
    Harry JD, Niemi JB, Kellogg S, D’Andrea S. System and method for neuro-stimulation [Internet]. US9616234 B2, 2017. Available from: http://www.google.com/patents/US9616234
  12. 12.
    Neren D, Johnson MD, Legon W, Bachour SP, Ling G, Divani AA (2016) Vagus nerve stimulation and other neuromodulation methods for treatment of traumatic brain injury. Neurocrit Care 24(2):308–319PubMedCrossRefGoogle Scholar
  13. 13.
    George MS, Aston-Jones G (2010) Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Neuropsychopharmacology 35(1):301–316PubMedCrossRefGoogle Scholar
  14. 14.
    Slavin KV. Peripheral Nerve Stimulation. Volume 24 of Progress in neurological surgery. Karger Medical and Scientific Publishers, 2011. Google Scholar
  15. 15.
    Wolpaw JR, Tennissen AM (2001) Activity-dependent spinal cord plasticity in health and disease. Annu Rev Neurosci 24:807–843PubMedCrossRefGoogle Scholar
  16. 16.
    Straube A, Ellrich J, Eren O, Blum B, Ruscheweyh R (2015) Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial. J Headache Pain 16:543PubMedCrossRefGoogle Scholar
  17. 17.
    Straube A, Eren O, Gaul C (2016) Role of the vagal nerve in the pathophysiology and therapy of headache. MMW Fortschr Med 158(6):74–76PubMedCrossRefGoogle Scholar
  18. 18.
    Danilov, Y. P., Kublanov, V. S., Retjunskij, K. J., Petrenko, T. S., & Babich, M. V. (2015). Non-invasive Multi-channel Neuro-stimulators in Treatment of the Nervous System Disorders. In BIODEVICES (pp. 88–94).Google Scholar
  19. 19.
    Petrenko TS, Kublanov VS, Retiunskiy KY (2015) Dynamic correction of the activity sympathetic nervous system (Dcasns) to restore cognitive functions. Eur Psychiatry 30:843CrossRefGoogle Scholar
  20. 20.
    Retyunskii KY, Kublanov VS, Petrenko TS, Fedotovskikh AV (2016) A new method for the treatment of Korsakoff’s (amnestic) psychosis: neurostimulation correction of the sympathetic nervous system. Neurosci Behav Physiol 46(7):748–753CrossRefGoogle Scholar
  21. 21.
    Soss J, Heck C, Murray D, Markovic D, Oviedo S, Corrale-Leyva G et al (2015) A prospective long-term study of external trigeminal nerve stimulation for drug-resistant epilepsy. Epilepsy Behav EB 42:44–47CrossRefGoogle Scholar
  22. 22.
    Miller S, Sinclair AJ, Davies B, Matharu M (2016 Oct) Neurostimulation in the treatment of primary headaches. Pract Neurol 16(5):362–375PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kacznaarek KA, Bach-Y-Rita P (1995) Tactile displays. Virtual Environ Adv Interface Des 55:349Google Scholar
  24. 24.
    Szeto AYJ, Saunders FA (1982) Electrocutaneous stimulation for sensory communication in rehabilitation engineering. IEEE Trans Biomed Eng BME-29(4):300–308CrossRefGoogle Scholar
  25. 25.
    Kaczmarek KA (2011) The tongue display unit (TDU) for electrotactile spatiotemporal pattern presentation. Sci Iran 18(6):1476–1485CrossRefGoogle Scholar
  26. 26.
    Kaczmarek KA, Tyler ME, Brisben AJ, Johnson KO (2000) The afferent neural response to electrotactile stimuli: preliminary results. IEEE Trans Rehabil Eng 8(2):268–270PubMedCrossRefGoogle Scholar
  27. 27.
    Kaczmarek KA, Webster JG, Bach-y-Rita P, Tompkins WJ (1991) Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans Biomed Eng 38(1):1–16PubMedCrossRefGoogle Scholar
  28. 28.
    Vallbo AB, Johansson RS (1984) Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol 3(1):3–14PubMedGoogle Scholar
  29. 29.
    Johansson RS, Vallbo AB (1979) Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol 286:283–300PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Wildenberg JC, Tyler ME, Danilov YP, Kaczmarek KA, Meyerand ME (2010) Sustained cortical and subcortical neuromodulation induced by electrical tongue stimulation. Brain Imaging Behav 4(3–4):199–211PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wildenberg JC, Tyler ME, Danilov YP, Kaczmarek KA, Meyerand ME (2011) Electrical tongue stimulation normalizes activity within the motion-sensitive brain network in balance-impaired subjects as revealed by group independent component analysis. Brain Connect 1(3):255–265PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Wildenberg JC, Tyler ME, Danilov YP, Kaczmarek KA, Meyerand ME (2011) High-resolution fMRI detects neuromodulation of individual brainstem nuclei by electrical tongue stimulation in balance-impaired individuals. NeuroImage 56(4):2129–2137PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wildenberg JC, Tyler ME, Danilov YP, Kaczmarek KA, Meyerand ME (2013) Altered connectivity of the balance processing network after tongue stimulation in balance-impaired individuals. Brain Connect 3(1):87–97PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4(3):389–399PubMedCrossRefGoogle Scholar
  35. 35.
    Dudek SM, Bear MF (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J Neurosci 13(7):2910–2918PubMedCrossRefGoogle Scholar
  36. 36.
    Kirkwood A, Lee HK, Bear MF (1995) Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. Nature 375(6529):328–331PubMedCrossRefGoogle Scholar
  37. 37.
    Larkman AU, Jack JJB (1995) Synaptic plasticity: hippocampal LTP. Curr Opin Neurobiol 5(3):324–334PubMedCrossRefGoogle Scholar
  38. 38.
    Levenes C, Daniel H, Crépel F (1998) Long-term depression of synaptic transmission in the cerebellum: cellular and molecular mechanisms revisited. Prog Neurobiol 55(1):79–91PubMedCrossRefGoogle Scholar
  39. 39.
    Shin R-M, Tsvetkov E, Bolshakov VY (2006) Spatiotemporal asymmetry of associative synaptic plasticity in fear conditioning pathways. Neuron 52(5):883–896PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Shin R-M, Tully K, Li Y, Cho J-H, Higuchi M, Suhara T et al (2010) Hierarchical order of coexisting pre- and postsynaptic forms of long-term potentiation at synapses in amygdala. Proc Natl Acad Sci U S A 107(44):19073–19078PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tully K, Li Y, Bolshakov VY (2007) Keeping in check painful synapses in central amygdala. Neuron 56(5):757–759PubMedCrossRefGoogle Scholar
  42. 42.
    Kublanov VS, Petrenko TS, Babich MV (2015) Multi-electrode neurostimulation system for treatment of cognitive impairments. Proc Annu Int Conf IEEE Eng Med Biol Soc 2015:2091–2094Google Scholar
  43. 43.
    Zucker RS (1999 Jun) Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol 9(3):305–313PubMedCrossRefGoogle Scholar
  44. 44.
    Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405PubMedCrossRefGoogle Scholar
  45. 45.
    Buchs PA, Muller D (1996) Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc Natl Acad Sci 93(15):8040–8045PubMedCrossRefGoogle Scholar
  46. 46.
    Calverley RK, Jones DG (1990) Contributions of dendritic spines and perforated synapses to synaptic plasticity. Brain Res Brain Res Rev 15(3):215–249PubMedCrossRefGoogle Scholar
  47. 47.
    Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399(6731):66–70PubMedCrossRefGoogle Scholar
  48. 48.
    Geinisman Y, Berry RW, Disterhoft JF, Power JM, Van der Zee EA (2001) Associative learning elicits the formation of multiple-synapse boutons. J Neurosci 21(15):5568–5573PubMedCrossRefGoogle Scholar
  49. 49.
    Jones DG, Itarat W, Calverley RKS (1991) Perforated synapses and plasticity. Mol Neurobiol 5(2–4):217–228PubMedCrossRefGoogle Scholar
  50. 50.
    Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402(6760):421–425PubMedCrossRefGoogle Scholar
  51. 51.
    Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Leonard G, Lapierre Y, Chen JK, Wardini R, Crane J, Ptito A (2017). Noninvasive tongue stimulation combined with intensive cognitive and physical rehabilitation induces neuroplastic changes in patients with multiple sclerosis: A multimodal neuroimaging study. Multiple Sclerosis Journal–Experimental, Translational and Clinical, 3(1), 2055217317690561.CrossRefGoogle Scholar
  53. 53.
    Chisholm AE, Malik RN, Blouin JS, Borisoff J, Forwell S, Lam, T (2014). Feasibility of sensory tongue stimulation combined with task-specific therapy in people with spinal cord injury: a case study. Journal of neuroengineering and rehabilitation, 11(1), 96.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Harbourne R, Becker K, Arpin DJ, Wilson, TW, Kurz MJ (2014). Improving the motor skill of children with posterior fossa syndrome: A case series. Pediatric Physical Therapy, 26(4), 462–468.PubMedCrossRefGoogle Scholar
  55. 55.
    Ignatova T, Kolbin V, Scherbak S, Sarana A, Sokolov A, Trufanov G, Semibratov N, Ryzhkov A, Efimtsev A, Danilov Y Translingual Neurostimulation in Treatment of Children with Cerebral Palsy in the Late Residual Stage. Case Study. DOI: 10.5220/0006732403320337. In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018) - Volume 4: BIOSIGNALS, 332–337 ISBN: 978-989-758-279-0Google Scholar
  56. 56.
    Chiluwal A, Narayan RK, Chaung W, Mehan N, Wang P, Bouton CE et al (2017) Neuroprotective effects of trigeminal nerve stimulation in severe traumatic brain injury. Sci Rep 7(1):6792PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yuri Danilov
    • 1
  • Dafna Paltin
    • 1
  1. 1.Department of KinesiologyUniversity of WisconsinMadisonUSA

Personalised recommendations