Advertisement

Computational Approaches in Multitarget Drug Discovery

  • Luciana Scotti
  • Hamilton Mitsugu Ishiki
  • Marcelo Cavalcante Duarte
  • Tiago Branquinho Oliveira
  • Marcus T. Scotti
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1800)

Abstract

Current therapeutic strategies entail identifying and characterizing a single protein receptor whose inhibition is likely to result in the successful treatment of a disease of interest, and testing experimentally large libraries of small molecule compounds “in vitro” and “in vivo” to identify promising inhibitors in model systems and determine if the findings are extensible to humans. This highly complex process is largely based on tests, errors, risk, time, and intensive costs. The virtual computational study of compounds simulates situations predicting possible drug linkages with multiple protein target atomic structures, taking into account the dynamic protein inhibitor, and can help identify inhibitors efficiently, particularly for complex drug-resistant diseases. Some discussions will relate to the potential benefits of this approach, using HIV-1 and Plasmodium falciparum infections as examples. Some authors have proposed a virtual drug discovery that not only identifies efficient inhibitors but also helps to minimize side effects and toxicity, thus increasing the likelihood of successful therapies. This chapter discusses concepts and research of bioactive multitargets related to toxicology.

Key words

In silico Drug discovery Multitarget Toxicology Drug 

References

  1. 1.
    Hammer SM, Abergh AJ, Erro JJ et al (2006) Treatment for Adult HIV Infection. JAMA 296(7):410–425CrossRefGoogle Scholar
  2. 2.
    Hopkins AL, Mason JS, Overington JP (2006) Can we rationally design promiscuous drugs? Curr Opin Struct Biol 16:127. Available on: http://www.sciencedirect.com/science/article/pii/S0959440X06000157. Access 20 October, 2017CrossRefPubMedGoogle Scholar
  3. 3.
    Jenwitheesuk E, Horst AJ, Rivas KL, Van Voorhis WC, Samudrala R (2008) Novel paradigms for drug discovery: computational multitarget screening. Trends Pharmacol Sci 29(2):62–71CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jenwitheesuk E, Samudrala R (2003) Improved prediction of HIV-1 protease-inhibitor binding energies by molecular dynamics simulations. BMC Struct Biol 3(1):2CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jenwitheesuk E, Samudrala R (2005) Identification of potential multitarget antimalarial drugs. JAMA 294(12):1490–1491PubMedGoogle Scholar
  6. 6.
    Jones R, Gazzard B (2006) The cost of antiretroviral drugs and influence on prescribing policies. Int J STD AIDS 17(8):499–506CrossRefPubMedGoogle Scholar
  7. 7.
    Metzner KJ, Allers K, Rauch P, Harrer T (2007) Rapid selection of drug-resistant HIV-1 during the first months of suppressive ART in treatment-naive patients. AIDS 21(6):703–711CrossRefPubMedGoogle Scholar
  8. 8.
    Santhosh KC, Paul GC, De Clercq E, Pannecouque C, Witvrouw M, Loftus TL, Turpin JA, Buckheit RW Jr, Cushman M (2001) Correlation of anti-HIV activity with anion spacing in a series of cosalane analogues with extended polycarboxylate pharmacophores. J Med Chem 44(5):703–714CrossRefPubMedGoogle Scholar
  9. 9.
    Scheeff ED, Bourne PE (2005) Structural evolution of the protein kinase–like superfamily. PLoS Comput Biol 1(5):e49CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shoichet BK (2005) Virtual screening of chemical libraries. Nature 432(7019):862–865CrossRefGoogle Scholar
  11. 11.
    Volberding PA, Lagakos SW, Grimes JM, Stein DS, Rooney J, Meng TC, Fischl MA, Collier AC, Phair JP, Hirsch MS (1995) A comparison of immediate with deferred zidovudine therapy for asymptomatic HIV-infected adults with CD4 cell counts of 500 or more per cubic millimeter. N Engl J Med 333(7):401–407CrossRefPubMedGoogle Scholar
  12. 12.
    Wierenga RK (2001) The TIM-barrel fold: a versatile framework for efficient enzymes. FEBS Lett 492:193. Available on http://doi.wiley.com/10.1016/S0014-5793%2801%2902236-0. Access 9 October, 2017CrossRefPubMedGoogle Scholar
  13. 13.
    Pei J, Yin N, Ma X, Lai L (2014) Systems biology brings new dimensions for structure-based drug design. J Am Chem Soc 136(33):11556–11565CrossRefPubMedGoogle Scholar
  14. 14.
    Brötz-Oesterhelt H, Brunner NA (2008) How many modes of action should an antibiotic have? Curr Opin Pharmacol 8(5):564–573CrossRefPubMedGoogle Scholar
  15. 15.
    Knight ZA, Lin H, Shokat KM (2010) Targeting the cancer kinome through polypharmacology. Nat Rev Cancer 10(2):130–137CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kumar R, Sharma A, Tiwari RK (2016) Computational drug designing and development: an insight. IRJET 03(05):10–14Google Scholar
  17. 17.
    Jadhav MN, Kokil GR, Harak SS, Wagh SB (2013) Direct and indirect drug design approaches for the development of novel tricyclic antipsychotics: potential 5-HT2A antagonist. J Chem 2013:1–10CrossRefGoogle Scholar
  18. 18.
    Shibi IG, Aswathy L, Jisha RS, Masand VH, Gajbhiye JM (2016) Virtual Screening Techniques to Probe the Antimalarial Activity of some Traditionally Used Phytochemicals. Comb Chem High Throughput Screen 19(7):572–591CrossRefPubMedGoogle Scholar
  19. 19.
    Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37(Web Server issue):W623–W633CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Liu K, Feng J, Young SS (2005) PowerMV:a software environment for molecular viewing.; descriptor generation.; data analysis and hit evaluation. J Chem Inf Model 45(2):515–522CrossRefPubMedGoogle Scholar
  21. 21.
    Kumar M, Makhal B, Gupta VK, Sharma A (2014) In silico investigation of medicinal spectrum of imidazo-azines from the perspective of multitarget screening against malaria, tuberculosis and Chagas disease. J Mol Graph Model 50:1–9CrossRefPubMedGoogle Scholar
  22. 22.
    Yuvaniyama J, Chitnumsub P, Kamchonwongpaisan S, Vanichtanankul J, Sirawaraporn W, Taylor P, Walkinshaw MD, Yuthavong Y (2003) Insights into antifo- late resistance from malarial DHFR-TS structures. Nat Struct Biol 10(5):357–365CrossRefPubMedGoogle Scholar
  23. 23.
    Perozzo R, Kuo M, Sidhu AB, Valiyaveettil JT, Bittman R, Jacobs WR Jr, Fidock DA, Sacchettini JC (2002) Structural elucidation of the specificity of the antibacterial agent triclosan for malarial triclosan for malarial enoyl acyl carrier protein reductase. J Biol Chem 277(15):13106–13114CrossRefPubMedGoogle Scholar
  24. 24.
    Merckx A, Echalier A, Langford K, Sicard A, Langsley G, Joore J, Doerig C, Noble M, Endicott J (2008) Structures of P. falciparum protein kinase 7 identify an activation motif and leads for inhibitor design. Structure 16(2):228–238CrossRefPubMedGoogle Scholar
  25. 25.
    Dias MV, Faim LM, Vasconcelos IB, De Oliveira JS, Basso LA, Santos DS, De Azevedo W (2007) Structure of shikimate kinase from Mycobacterium tuberculosis complexed with ADP and shikimate at 1.9 Å of resolution. Acta Crystallogr Sect F 63:1–6CrossRefGoogle Scholar
  26. 26.
    Wang S, Eisenberg D (2003) Crystal structures of a pantothenate synthetase from M. tuberculosis and its complexes with substrates and a reaction intermediate. Protein Sci 12(5):1097–1108CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Li de la Sierra I, Munier-Lehmann H, Gilles AM, Bârzu O, Delarue M (2001) X-ray structure of TMP kinase from Mycobacterium tuberculosis complexed with TMP at 1.95 Å resolution. J Mol Biol 311(1):87–100CrossRefPubMedGoogle Scholar
  28. 28.
    Basavannacharya C, Robertson G, Munshi T, Keep NH, Bhakta S (2010) ATP- dependent MurE ligase in Mycobacterium tuberculosis: biochemical and structural characterisation. Tuberculosis 90(1):16–24CrossRefPubMedGoogle Scholar
  29. 29.
    Bond CS, Zhang Y, Berriman M, Cunningham ML, Fairlamb AH, Hunter WN (1999) Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure 7(1):81–89CrossRefPubMedGoogle Scholar
  30. 30.
    Ladame S, Castilho MS, Silva CH, Denier C, Hannaert V, Périé J, Oliva G, Willson M (2003) Crystal structure of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase complexed with an analogue of 1,3-bisphospho-d-glyceric acid. Eur J Biochem 270(22):4574–4586CrossRefPubMedGoogle Scholar
  31. 31.
    Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, Alzari PM (2004) Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure 12(5):775–784CrossRefPubMedGoogle Scholar
  32. 32.
    Abad-zapatero C, Metz JT (2005) Ligand efficiency indices as guideposts for drug Discovery. Drug Discov Today 10(7):464–469CrossRefPubMedGoogle Scholar
  33. 33.
    Azam F, Mohamed N, Alhussen F (2015) Molecular interaction studies of green tea catechins as multitarget drug candidates for the treatment of Parkinson’s disease: computational and structural insights. Network 26(3-4):97–115CrossRefPubMedGoogle Scholar
  34. 34.
    Braicu C, Ladomery MR, Chedea VS, Irimie A, Berindan-Neagoe I (2013) The relationship between the structure and biological actions of green tea catechins. Food Chem 141(3):3282–3289CrossRefPubMedGoogle Scholar
  35. 35.
    Guo S, Bezard E, Zhao B (2005) Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic Biol Med 39(5):682–695CrossRefPubMedGoogle Scholar
  36. 36.
    Maqbool M, Manral A, Jameel E, Kumar J, Saini V, Shandilya A, Tiwari M, Hoda N, Jayaram B (2016) Development of cyanopyridine-triazine hybrids as lead multitarget anti-Alzheimer agents. Bioorg Med Chem 24(12):2777–2788CrossRefPubMedGoogle Scholar
  37. 37.
    Palanimuthu D, Poon R, Sahni S, Anjum R, Hibbs D, Lin HY, Bernhardt PV, Kalinowski DS, Richardson DR (2017) A novel class of thiosemicarbazones show multi-functional activity for the treatment of Alzheimer’s disease. Eur J Med Chem 9(139):612–632CrossRefGoogle Scholar
  38. 38.
    Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3(3):205–214CrossRefPubMedGoogle Scholar
  39. 39.
    Ayton S, Lei P, Bush AI (2013) Metallostasis in Alzheimer’s disease. Free Radic Biol Med 62:76–89CrossRefPubMedGoogle Scholar
  40. 40.
    Hegde ML, Bharathi P, Suram A, Venugopal C, Jagannathan R, Poddar P, Srinivas P, Sambamurti K, Rao KJ, Scancar J, Messori L, Zecca L, Zatta P (2009) Challenges associated with metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis 17(3):457–468CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Vickers JC, Dickson TC, Adlard PA, Saunders HL, King CE, McCormack G (2000) The cause of neuronal degeneration in Alzheimer’s disease. Prog Neurobiol 60(2):139–165CrossRefPubMedGoogle Scholar
  42. 42.
    Wolfe DM, Lee JH, Kumar A, Lee S, Orenstein SJ, Nixon RA (2013) Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification. Eur J Neurosci 37(12):1949–1961CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Morphy R (2010) Selectively nonselective kinase inhibition: striking the right balance. J Med Chem 53(4):1413–1437CrossRefPubMedGoogle Scholar
  44. 44.
    Martin MP, Olesen SH, Georg GI, Schönbrunn E (2013) Cyclin-dependent kinase inhibitor dinaciclib interacts with the acetyl-lysine recognition site of bromodomains. ACS Chem Biol 8(11):2360–2365CrossRefPubMedGoogle Scholar
  45. 45.
    Parry D, Guzi T, Shanahan F, Davis N, Prabhavalkar D, Wiswell D, Seghezzi W, Paruch K, Dwyer MP, Doll R, Nomeir A, Windsor W, Fischmann T, Wang Y, Oft M, Chen T, Kirschmeier P, Lees EM (2010) Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol Cancer Ther 9(8):2344–2353CrossRefPubMedGoogle Scholar
  46. 46.
    Carlino L, Rastelli G (2016) Dual kinase-bromodomain inhibitors in anticancer drug discovery: a structural and pharmacological perspective. J Med Chem 59(20):9305–9320CrossRefPubMedGoogle Scholar
  47. 47.
    Dixon SL, Smondyre AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20(10-11):647–671CrossRefPubMedGoogle Scholar
  48. 48.
    Dixon SL, Smondyrev AM, Rao SN (2006) PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des 67(5):370–372CrossRefPubMedGoogle Scholar
  49. 49.
    Allen BK, Mehta S, Ember SWJ, Schonbrunn E, Ayad N, Schürer SC (2015) Large-scale computational screening identifies first in class multitarget inhibitor of EGFR kinase and BRD4. Sci Rep 05:16924CrossRefGoogle Scholar
  50. 50.
    Schürer SC, Muskal SM (2013) Kinome-wide activity modeling from diverse public high-quality data sets. J Chem Inf Model 53(1):27–38CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) Chembl: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(Database issue):D1100–D1107CrossRefPubMedGoogle Scholar
  52. 52.
    Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49(23):6789–6801CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Allen BK, Mehta S, Ember SWJ, Zhu JY, Schönbrunn E, Ayad NG, Schürer SC (2017) Identification of a novel class of BRD4 inhibitors by computational screening and binding simulations. ACS Omega 2(8):4760–4771CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Engler AC, Wiradharma N, Ong ZY, Coady DJ, Hedrick JL, Yang YY (2016) Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today 7(3):201–222CrossRefGoogle Scholar
  55. 55.
    Speck-Planche A, Kleandrova VV, Ruso JM, Cordeiro MN (2016) First multitarget chemo-bioinformatic model to enable the discovery of antibacterial peptides against multiple gram-positive pathogens. J Chem Inf Model 56:588–598CrossRefPubMedGoogle Scholar
  56. 56.
    Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250CrossRefPubMedGoogle Scholar
  58. 58.
    Gogoladze G, Grigolava M, Vishnepolsky B, Chubinidze M, Duroux P, Lefranc MP, Pirtskhalava M (2014) DBAASP: database of antimicrobial activity and structure of peptides. FEMS Microbiol Lett 357:63–68CrossRefPubMedGoogle Scholar
  59. 59.
    Verslyppe B, De Smet W, De Baets B, De Vos P, Dawyndt P (2014) Straininfo introduces electronic passports for microorganisms. Syst Appl Microbiol 37:42–50CrossRefPubMedGoogle Scholar
  60. 60.
    Dresen S, Ferreirós N, Gnann H, Zimmermann R, Weinmann W (2010) Detection and identification of 700 drugs by multi-target screening with a 3200 Q TRAP® LC-MS/MS system and library searching. Anal Bioanal Chem 396:2425–2434CrossRefPubMedGoogle Scholar
  61. 61.
    Kell DB (2013) Finding novel pharmaceuticals in the systems biology era using multiple effective drug targets, phenotypic screening and knowledge of transporters: where drug discovery went wrong and how to fix it. FEBS J 280:5957–5980CrossRefPubMedGoogle Scholar
  62. 62.
    Durrant JD, Amaro RE, Xie L, Urbaniak MD, Ferguson MAJ, Haapalainen A et al (2010) A multidimensional strategy to detect polypharmacological targets in the absence of structural and sequence homology (2010). PLoS Comput Biol 6:e1000648CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ouyang H, Liu S, Zeng W, Levitt RC, Candiotti KA, Hao S (2012) An emerging new paradigm in opioid withdrawal: a critical role for glia-neuron signaling in the periaqueductal gray. Sci World J 2012:1–9Google Scholar
  64. 64.
    Del Bello F, Diamanti E, Giannella M, Mammoli V, Mattioli L, Titomanlio F (2013) Exploring multitarget interactions to reduce opiate withdrawal syndrome and psychiatric comorbidity. ACS Med Chem Lett 4:875–879CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Ma S, Feng C, Zhang X, Dai G, Li C, Cheng X et al (2013) The multi-target capabilities of the compounds in a TCM used to treat sepsis and their in silico pharmacology. Complement Ther Med 21:35–41CrossRefPubMedGoogle Scholar
  66. 66.
    Gu S, Yin N, Pei J, Lai L (2013) Understanding molecular mechanisms of traditional Chinese medicine for the treatment of influenza viruses infection by computational approaches. Mol Biosyst 9:1–5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Luciana Scotti
    • 1
    • 2
  • Hamilton Mitsugu Ishiki
    • 3
  • Marcelo Cavalcante Duarte
    • 4
  • Tiago Branquinho Oliveira
    • 4
  • Marcus T. Scotti
    • 1
  1. 1.Postgraduate Program in Natural Products and Synthetic BioactiveFederal University of ParaíbaJoão PessoaBrazil
  2. 2.Teaching and Research Management - University Hospital, Federal University of ParaíbaJoão PessoaBrazil
  3. 3.University of Western São Paulo (Unoeste)Presidente PrudenteBrazil
  4. 4.Federal University of SergipeSergipeBrazil

Personalised recommendations