The Yeast Three-Hybrid System for Protein Interactions

  • Franziska Glass
  • Mizuki TakenakaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1794)


Proteins rarely act alone as their functions tend to be regulated in vivo. Therefore, protein–protein interaction analyses provide key clues for understanding the complex biological processes in the living cell. Several techniques have been developed to elucidate the conformation of large protein complexes, dynamic protein complex rearrangement and transient protein interactions. Yeast two-hybrid system is a well-established method to analyze binary protein interactions. Here we describe a basic yeast three-hybrid method, which represents an additional refinement of the classical yeast two-hybrid system for analyzing further complex interactions among three proteins.

Key words

Protein interaction Yeast three-hybrid Yeast two-hybrid Protein complexes 


  1. 1.
    Sekar RB, Periasamy A (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160:629–633. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Johnsson N, Varshavsky A (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci U S A 91:10340–10344CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kato N, Jones J (2010) The split luciferase complementation assay. Methods Mol Biol 655:359–376CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chien CT, Bartel PL, Sternglanz R, Fields S (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A 88:9578–9582CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brückner A, Polge C, Lentze N, Auerbach D, Schlattner U (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10:2763–2788. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kerppola TK (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1:1278–1286. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tirode F, Malaguti C, Romero F, Attar R, Camonis J, Egly JM (1997) A conditionally expressed third partner stabilizes or prevents the formation of a transcriptional activator in a three-hybrid system. J Biol Chem 272:22995–22999CrossRefPubMedGoogle Scholar
  9. 9.
    Takenaka M, Zehrmann A, Verbitskiy D, Kugelmann M, Härtel B, Brennicke A (2012) Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants. Proc Natl Acad Sci U S A 109:5104–5109. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zehrmann A, Härtel B, Glass F, Bayer-Császár E, Obata T, Meyer E, Brennicke A, Takenaka M (2015) Selective homo- and heteromer interactions between the multiple organellar RNA editing factor (MORF) proteins in Arabidopsis thaliana. J Biol Chem 290:6445–6456. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Brehme N, Bayer-Császár E, Glass F, Takenaka M (2015) The DYW subgroup PPR protein MEF35 targets RNA editing sites in the mitochondrial rpl16, nad4 and cob mRNAs in Arabidopsis thaliana. PLoS One 10:e0140680CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bentolila S, Heller WP, Sun T, Babina AM, Friso G, van Wijk KJ, Hanson MR (2012) PNAS Plus: RIP1, a member of an Arabidopsis protein family, interacts with the protein RARE1 and broadly affects RNA editing. Proc Natl Acad Sci 109:E1453–E1461. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Glass F, Hä Rtel B, Zehrmann A, Verbitskiy D, Takenaka M (2015) MEF13 requires MORF3 and MORF8 for RNA editing at eight targets in mitochondrial mRNAs in Arabidopsis thaliana. Mol Plant 8:1466–1477. CrossRefPubMedGoogle Scholar
  14. 14.
    Maruta N, Trusov Y, Botella JR (2016) Yeast three-hybrid system for the detection of protein-protein interactions. Methods Mol Biol 1363:145–154CrossRefPubMedGoogle Scholar
  15. 15.
    Tao T, Zhou C-J, Wang Q, Chen X-R, Sun Q, Zhao T-Y, Ye J-C, Wang Y, Zhang Z-Y, Zhang Y-L, Guo Z-J, Wang X-B, Li D-W, Yu J-L, Han C-G (2017) Rice black streaked dwarf virus P7-2 forms a SCF complex through binding to Oryza sativa SKP1-like proteins, and interacts with GID2 involved in the gibberellin pathway. PLoS One 12:e0177518. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Molekulare Botanik, Universität UlmUlmGermany
  2. 2.Lab. Plant Molecular Genetics, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations