Fluorescence In Situ Hybridization (FISH) in Multiple Myeloma

  • Erming TianEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1792)


The application of fluorescence in situ hybridization (FISH) technology in diagnosis and molecular classification of cancer-risk has become an essential tool in the proceeding of personalized therapy. In multiple myeloma, the precise FISH detection of numerical and structural genetic aberrations can be carried out on metaphase chromosome spreads, interphase nuclei, and formalin fixed paraffin-embedded (FFPE) tissues. To dissect highly complex cancer genomes, a broad variety of novel DNA probes, which outpace supplies from commercial resources on the market, are also crucial to the advanced translational researches. Here, we provide the protocols for the creation of custom-made DNA probes and for conducting hybridizations on various targeting cells and tissues.

Key words

Cancer cytogenetics FISH DNA probes 


  1. 1.
    Das KC, Aikat BK (1967) Chromosomal abnormalities in multiple myeloma. Blood 30(6):738–748PubMedGoogle Scholar
  2. 2.
    Philip P, Drivsholm A (1976) G-banding analysis of complex aneuploidy in multiple myeloma bone marrow cells. Blood 47(1):69–77PubMedGoogle Scholar
  3. 3.
    Liang W, Hopper JE, Rowley JD (1979) Karyotypic abnormalities and clinical aspects of patients with multiple myeloma and related paraproteinemic disorders. Cancer 44(2):630–644CrossRefGoogle Scholar
  4. 4.
    Dewald GW, Kyle RA, Hicks GA, Greipp PR (1985) The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis. Blood 66(2):380–390PubMedGoogle Scholar
  5. 5.
    Gould J, Alexanian R, Goodacre A, Pathak S, Hecht B, Barlogie B (1988) Plasma cell karyotype in multiple myeloma. Blood 71(2):453–456PubMedGoogle Scholar
  6. 6.
    Flactif M, Zandecki M, Lai JL, Bernardi F, Obein V, Bauters F, Facon T (1995) Interphase fluorescence in situ hybridization (FISH) as a powerful tool for the detection of aneuploidy in multiple myeloma. Leukemia 9(12):2109–2114PubMedGoogle Scholar
  7. 7.
    Lai JL, Zandecki M, Mary JY, Bernardi F, Izydorczyk V, Flactif M, Morel P, Jouet JP, Bauters F, Facon T (1995) Improved cytogenetics in multiple myeloma: a study of 151 patients including 117 patients at diagnosis. Blood 85(9):2490–2497PubMedGoogle Scholar
  8. 8.
    Calasanz MJ, Cigudosa JC, Odero MD, Ferreira C, Ardanaz MT, Fraile A, Carrasco JL, Sole F, Cuesta B, Gullon A (1997) Cytogenetic analysis of 280 patients with multiple myeloma and related disorders: primary breakpoints and clinical correlations. Genes Chromosomes Cancer 18(2):84–93CrossRefGoogle Scholar
  9. 9.
    Chesi M, Nardini E, Brents LA, Schrock E, Ried T, Kuehl WM, Bergsagel PL (1997) Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 16(3):260–264. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Feinman R, Sawyer J, Hardin J, Tricot G (1997) Cytogenetics and molecular genetics in multiple myeloma. Hematol Oncol Clin North Am 11(1):1–25CrossRefGoogle Scholar
  11. 11.
    Shaughnessy J, Tian E, Sawyer J, Bumm K, Landes R, Badros A, Morris C, Tricot G, Epstein J, Barlogie B (2000) High incidence of chromosome 13 deletion in multiple myeloma detected by multiprobe interphase FISH. Blood 96(4):1505–1511PubMedGoogle Scholar
  12. 12.
    Keung YK, Yung C, Wong JW, Shah F, Cobos E, Tonk V (1998) Unusual presentation of multiple myeloma with “jumping translocation” involving 1q21. A case report and review of the literature. Cancer Genet Cytogenet 106(2):135–139CrossRefGoogle Scholar
  13. 13.
    Sawyer JR, Tricot G, Mattox S, Jagannath S, Barlogie B (1998) Jumping translocations of chromosome 1q in multiple myeloma: evidence for a mechanism involving decondensation of pericentromeric heterochromatin. Blood 91(5):1732–1741PubMedGoogle Scholar
  14. 14.
    Sawyer JR, Tricot G, Lukacs JL, Binz RL, Tian E, Barlogie B, Shaughnessy J Jr (2005) Genomic instability in multiple myeloma: evidence for jumping segmental duplications of chromosome arm 1q. Genes Chromosomes Cancer 42(1):95–106. CrossRefPubMedGoogle Scholar
  15. 15.
    Hanamura I, Stewart JP, Huang Y, Zhan F, Santra M, Sawyer JR, Hollmig K, Zangarri M, Pineda-Roman M, van Rhee F, Cavallo F, Burington B, Crowley J, Tricot G, Barlogie B, Shaughnessy JD Jr (2006) Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 108(5):1724–1732. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tian E, Sawyer JR, Heuck CJ, Zhang Q, van Rhee F, Barlogie B, Epstein J (2014) In multiple myeloma, 14q32 translocations are nonrandom chromosomal fusions driving high expression levels of the respective partner genes. Genes Chromosomes Cancer 53(7):549–557. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Osoegawa K, Mammoser AG, Wu C, Frengen E, Zeng C, Catanese JJ, de Jong PJ (2001) A bacterial artificial chromosome library for sequencing the complete human genome. Genome Res 11(3):483–496. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Myeloma InstituteUniversity of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations