Advertisement

Microfluidic Production and Application of Lipid Nanoparticles for Nucleic Acid Transfection

  • Anitha Thomas
  • Shyam M. Garg
  • Rebecca A. G. De Souza
  • Eric Ouellet
  • Grace Tharmarajah
  • Dave Reichert
  • Mina Ordobadi
  • Shell Ip
  • Euan C. Ramsay
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1792)

Abstract

Lipid nanoparticles (LNPs) are established in the biopharmaceutical industry for efficient encapsulation and cytosolic delivery of nucleic acids for potential therapeutics, with several formulations in clinical trials. The advantages of LNPs can also be applied in basic research and discovery with a microfluidic method of preparation now commercially available that allows preparations to be scaled down to quantities appropriate for cell culture. These preparations conserve expensive nucleic acids while maintaining the particle characteristics that have made LNPs successful in later stages of genetic medicine development. Additionally, this method and the resulting LNPs are seamlessly scalable to quantities appropriate for in vivo models and development of nucleic acid therapeutics.

The present work describes the methodology for preparing LNPs loaded with siRNA, mRNA or plasmids using a commercially available microfluidic instrument and an accompanying transfection kit. Guidelines for application to cultured cells in a well-plate format are also provided.

Key words

Transfection Lipid nanoparticle RNAi siRNA mRNA Plasmid Encapsulation 

References

  1. 1.
    Cullis PR, Hope MJ (2017) Lipid nanoparticle systems for enabling gene therapies. Mol Ther 25:1467–1475. https://doi.org/10.1016/j.ymthe.2017.03.013 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Belliveau NM, Huft J, Lin PJ et al (2012) Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids 1:e37. https://doi.org/10.1038/mtna.2012.28 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lv H, Zhang S, Wang B et al (2006) Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 114:100–109. https://doi.org/10.1016/j.jconrel.2006.04.014 CrossRefPubMedGoogle Scholar
  4. 4.
    Wu L, Nguyen LH, Zhou K et al (2015) Precise let-7 expression levels balance organ regeneration against tumor suppression. elife 4:e09431. https://doi.org/10.7554/eLife.09431 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yaghi NK, Wei J, Hashimoto Y et al (2017) Immune modulatory nanoparticle therapeutics for intracerebral glioma. Neuro Oncol 19:372–382. https://doi.org/10.1093/neuonc/now198 CrossRefPubMedGoogle Scholar
  6. 6.
    Ramishetti S, Landesman-Milo D, Peer D (2016) Advances in RNAi therapeutic delivery to leukocytes using lipid nanoparticles. J Drug Target 24:780–786. https://doi.org/10.3109/1061186X.2016.1172587 CrossRefPubMedGoogle Scholar
  7. 7.
    Weinstein S, Toker IA, Emmanuel R et al (2016) Harnessing RNAi-based nanomedicines for therapeutic gene silencing in B-cell malignancies. Proc Natl Acad Sci U S A 113:E16–E22. https://doi.org/10.1073/pnas.1519273113 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anitha Thomas
    • 1
  • Shyam M. Garg
    • 1
  • Rebecca A. G. De Souza
    • 1
  • Eric Ouellet
    • 1
  • Grace Tharmarajah
    • 1
  • Dave Reichert
    • 1
  • Mina Ordobadi
    • 1
  • Shell Ip
    • 1
  • Euan C. Ramsay
    • 1
  1. 1.Precision NanoSystemsVancouverCanada

Personalised recommendations