Advertisement

ELDA qASO-PCR for High Sensitivity Detection of Tumor Cells in Bone Marrow and Peripheral Blood

  • Stefanie Huhn
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1792)

Abstract

A quantitative allele-specific polymerase chain reaction in combination with an extreme limiting dilution approach (ELDA qASO-PCR) enables the detection of tumor cells in patients with multiple myeloma (MM) in bone marrow (BM) samples and in peripheral blood (PB) with a sensitivity of <10−6. The two-step procedure of patient-specific tumor cell identification via the immunoglobulin heavy chain (IgH) and kappa/lambda light chain (k/λ LC) locus, followed by tumor cells quantification by ELDA qASO-PCR allows for the application of this method to the majority of MM patients, including those with Bence Jones proteinuria.

Key words

qASO-PCR Minimal residual diseases Multiple myeloma 

Notes

Acknowledgments

We thank Manfed Küpper for his assistance in the design of the consensus primers for k/λ loci.

References

  1. 1.
    Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, Munshi N, Lonial S, Blade J, Mateos MV, Dimopoulos M, Kastritis E, Boccadoro M, Orlowski R, Goldschmidt H, Spencer A, Hou J, Chng WJ, Usmani SZ, Zamagni E, Shimizu K, Jagannath S, Johnsen HE, Terpos E, Reiman A, Kyle RA, Sonneveld P, Richardson PG, McCarthy P, Ludwig H, Chen W, Cavo M, Harousseau JL, Lentzsch S, Hillengass J, Palumbo A, Orfao A, Rajkumar SV, San Miguel J, Avet-Loiseau H (2016) International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 17(8):e328–e346. https://doi.org/10.1016/S1470-2045(16)30206-6 CrossRefPubMedGoogle Scholar
  2. 2.
    Paiva B, Vidriales MB, Cervero J, Mateo G, Perez JJ, Montalban MA, Sureda A, Montejano L, Gutierrez NC, Garcia de Coca A, de Las Heras N, Mateos MV, Lopez-Berges MC, Garcia-Boyero R, Galende J, Hernandez J, Palomera L, Carrera D, Martinez R, de la Rubia J, Martin A, Blade J, Lahuerta JJ, Orfao A, San Miguel JF, Groups GPCS (2008) Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood 112(10):4017–4023. https://doi.org/10.1182/blood-2008-05-159624 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rawstron AC, Child JA, de Tute RM, Davies FE, Gregory WM, Bell SE, Szubert AJ, Navarro-Coy N, Drayson MT, Feyler S, Ross FM, Cook G, Jackson GH, Morgan GJ, Owen RG (2013) Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J Clin Oncol 31(20):2540–2547. https://doi.org/10.1200/JCO.2012.46.2119 CrossRefPubMedGoogle Scholar
  4. 4.
    Korde N, Zingone A, Kwok ML, Manasanch EE, Bhutani M, Tageja N, Kazandjian D, Mailankody S, Costello R, Zhang Y, Burton D, Carter G, Wu P, Mulquin M, Zuchlinski D, Maric I, Calvo KR, Braylan RC, Roschewski M, Yuan C, Stetler-Stevenson M, Arthur DC, Lindenberg L, Kurdziel K, Choyke P, Steinberg SM, Landgren O (2013) Phase II clinical and correlative study of carfilzomib, lenalidomide, and dexamethasone followed by lenalidomide extended dosing (CRD-R) induces high rates of MRD negativity in newly diagnosed multiple myeloma (MM) patients. Blood 122(21)Google Scholar
  5. 5.
    Sherrod AM, Hari P, Mosse CA, Walker RC, Cornell RF (2015) Minimal residual disease testing after stem cell transplantation for multiple myeloma. Bone Marrow Transplant. https://doi.org/10.1038/bmt.2015.164
  6. 6.
    Avet-Loiseau H, Corre J, Lauwers-Cances V, Chretien M-L, Robillard N, Leleu X, Hulin C, Gentil C, Arnulf B, Belhadj K, Brechignac S, Garderet L, Karlin L, Marit G, Benboubker L, Orsini-Piocelle F, Royer B, Drenou B, Tiab M, Lamy T, MACRO M, Richardson PG, Anderson KC, Faham M, Facon T, Moreau P, Attal M, Munshi NC (2015) Evaluation of minimal residual disease (MRD) by next generation sequencing (NGS) is highly predictive of progression free survival in the IFM/DFCI 2009 trial. Blood 126(23):191Google Scholar
  7. 7.
    Martinez-Lopez J, Lahuerta JJ, Pepin F, Gonzalez M, Barrio S, Ayala R, Puig N, Montalban MA, Paiva B, Weng L, Jimenez C, Sopena M, Moorhead M, Cedena T, Rapado I, Mateos MV, Rosinol L, Oriol A, Blanchard MJ, Martinez R, Blade J, San Miguel J, Faham M, Garcia-Sanz R (2014) Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood 123(20):3073–3079. https://doi.org/10.1182/blood-2014-01-550020 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hose D, Reme T, Meissner T, Moreaux J, Seckinger A, Lewis J, Benes V, Benner A, Hundemer M, Hielscher T, Shaughnessy JD Jr, Barlogie B, Neben K, Kramer A, Hillengass J, Bertsch U, Jauch A, De Vos J, Rossi JF, Mohler T, Blake J, Zimmermann J, Klein B, Goldschmidt H (2009) Inhibition of aurora kinases for tailored risk-adapted treatment of multiple myeloma. Blood 113(18):4331–4340. https://doi.org/10.1182/blood-2008-09-178350 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Retter I, Althaus HH, Munch R, Muller W (2005) VBASE2, an integrative V gene database. Nucleic Acids Res 33(Database issue):D671–D674. https://doi.org/10.1093/nar/gki088 CrossRefPubMedGoogle Scholar
  11. 11.
    Cremer FW, Ehrbrecht E, Kiel K, Benner A, Hegenbart U, Ho AD, Goldschmidt H, Moos M (2000) Evaluation of the kinetics of the bone marrow tumor load in the course of sequential high-dose therapy assessed by quantitative PCR as a predictive parameter in patients with multiple myeloma. Bone Marrow Transplant 26(8):851–858. https://doi.org/10.1038/sj.bmt.1702628 CrossRefPubMedGoogle Scholar
  12. 12.
    Hu Y, Smyth GK (2009) ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 347(1–2):70–78. https://doi.org/10.1016/j.jim.2009.06.008 CrossRefPubMedGoogle Scholar
  13. 13.
    Helsel DR (2005) Nondectects and data analysis; statistics for censored environmental data. John Wiley and Sons, Hoboken, NJGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Internal Medicine VUniversity of HeidelbergHeidelbergGermany

Personalised recommendations