Advertisement

Myelin pp 115-129 | Cite as

DRG Neuron/Schwann Cells Myelinating Cocultures

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1791)

Abstract

Our understanding of the processes controlling peripheral nervous system myelination have been significantly benefited by the development of an in vitro myelinating culture system in which primary Schwann cells are cocultured together with primary sensory neurons. In this chapter, we describe the protocol currently used in our laboratories to establish Schwann cells neuronal myelinating cocultures. We also include a detailed description of the various substrates that can be used to establish it.

Key words

Myelin Schwann cells Dorsal root ganglia sensory neurons Cocultures Peripheral nervous system Development 

Notes

Acknowledgments

We would like to thank Dr. James L. Salzer (New York University) for instrumental training on the world of myelinating Schwann cells neuronal cocultures.

We are also grateful to Dr. Steven Einheber (Hunter College New York), Dr. Angelo Quattrini (San Raffaele Scientific Institute), and Dr. Stefano Previtali (San Raffaele Scientific Institute) for providing pictures and for long-standing collaboration. Finally, we would like to thank present and past members of our laboratories for their many contributions to the studies cited here. Works in A.B. laboratory is supported by Telethon-Italy (GGP12017 and GGP15012A) and the ERA-Net for research programs on rare diseases (E-Rare 2). Works in C.T. laboratory is supported by Telethon Italy (GGP14040 and GGP15012) and the Italian Minister of Health (PE 13-9-T).

References

  1. 1.
    Bercury KK, Macklin WB (2015) Dynamics and mechanisms of CNS myelination. Dev Cell 32(4):447–458. https://doi.org/10.1016/j.devcel.2015.01.016 CrossRefPubMedGoogle Scholar
  2. 2.
    Tomassy GS, Dershowitz LB, Arlotta P (2015) Diversity matters: a revised guide to myelination. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2015.09.002
  3. 3.
    Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 468(7321):244–252. https://doi.org/10.1038/nature09614 CrossRefGoogle Scholar
  4. 4.
    Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561CrossRefGoogle Scholar
  5. 5.
    Taveggia C, Feltri ML, Wrabetz L (2010) Signals to promote myelin formation and repair. Nat Rev Neurol 6(5):276–287CrossRefGoogle Scholar
  6. 6.
    Wood PM (1976) Separation of functional Schwann cells and neurons from normal peripheral nerve tissue. Brain Res 115(3):361–375CrossRefGoogle Scholar
  7. 7.
    Eldridge CF, Bunge MB, Bunge RP, Wood PM (1987) Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J Cell Biol 105(2):1023–1034CrossRefGoogle Scholar
  8. 8.
    Kleitman N, Wood PM, Bunge RP (1998) Tissue culture methods for the study of myelination. In: culturing nerve cells. Cambridge MIT press, Cambridge, pp 545–594Google Scholar
  9. 9.
    Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S, Xu X, Esper RM, Loeb JA, Shrager P, Chao MV, Falls DL, Role L, Salzer JL (2005) Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47(5):681–694CrossRefGoogle Scholar
  10. 10.
    Vaccari I, Dina G, Tronchere H, Kaufman E, Chicanne G, Cerri F, Wrabetz L, Payrastre B, Quattrini A, Weisman LS, Meisler MH, Bolino A (2011) Genetic interaction between MTMR2 and FIG 4 phospholipid phosphatases involved in Charcot-Marie-tooth neuropathies. PLoS Genet 7(10):e1002319. https://doi.org/10.1371/journal.pgen.1002319 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Trimarco A, Forese MG, Alfieri V, Lucente A, Brambilla P, Dina G, Pieragostino D, Sacchetta P, Urade Y, Boizet-Bonhoure B, Martinelli Boneschi F, Quattrini A, Taveggia C (2014) Prostaglandin D2 synthase/GPR44: a signaling axis in PNS myelination. Nat Neurosci 17(12):1682–1692. https://doi.org/10.1038/nn.3857 CrossRefPubMedGoogle Scholar
  12. 12.
    Bolis A, Coviello S, Visigalli I, Taveggia C, Bachi A, Chishti AH, Hanada T, Quattrini A, Previtali SC, Biffi A, Bolino A (2009) Dlg1, Sec8, and Mtmr2 regulate membrane homeostasis in Schwann cell myelination. J Neurosci 29(27):8858–8870CrossRefGoogle Scholar
  13. 13.
    Bolino A, Piguet F, Alberizzi V, Pellegatta M, Rivellini C, Guerrero-Valero M, Noseda R, Brombin C, Nonis A, D’Adamo P, Taveggia C, Previtali SC (2016) Niacin-mediated Tace activation ameliorates CMT neuropathies with focal hypermyelination. EMBO Mol Med 8(12):1438–1454. https://doi.org/10.15252/emmm.201606349 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Feinberg K, Eshed-Eisenbach Y, Frechter S, Amor V, Salomon D, Sabanay H, Dupree JL, Grumet M, Brophy PJ, Shrager P, Peles E (2010) A glial signal consisting of gliomedin and NrCAM clusters axonal Na+ channels during the formation of nodes of Ranvier. Neuron 65(4):490–502. https://doi.org/10.1016/j.neuron.2010.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dzhashiashvili Y, Zhang Y, Galinska J, Lam I, Grumet M, Salzer JL (2007) Nodes of Ranvier and axon initial segments are ankyrin G-dependent domains that assemble by distinct mechanisms. J Cell Biol 177(5):857–870. https://doi.org/10.1083/jcb.200612012 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Eshed Y, Feinberg K, Poliak S, Sabanay H, Sarig-Nadir O, Spiegel I, Bermingham JR Jr, Peles E (2005) Gliomedin mediates Schwann cell-axon interaction and the molecular assembly of the nodes of Ranvier. Neuron 47(2):215–229. https://doi.org/10.1016/j.neuron.2005.06.026 CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang Y, Bekku Y, Dzhashiashvili Y, Armenti S, Meng X, Sasaki Y, Milbrandt J, Salzer JL (2012) Assembly and maintenance of nodes of ranvier rely on distinct sources of proteins and targeting mechanisms. Neuron 73(1):92–107. https://doi.org/10.1016/j.neuron.2011.10.016 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fernandez-Valle C, Gorman D, Gomez AM, Bunge MB (1997) Actin plays a role in both changes in cell shape and gene-expression associated with Schwann cell myelination. J Neurosci 17(1):241–250CrossRefGoogle Scholar
  19. 19.
    Wanner IB, Wood PM (2002) N-cadherin mediates axon-aligned process growth and cell-cell interaction in rat Schwann cells. J Neurosci 22(10):4066–4079CrossRefGoogle Scholar
  20. 20.
    Salzer JL, Bunge RP (1980) Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury. J Cell Biol 84(3):739–752CrossRefGoogle Scholar
  21. 21.
    Salzer JL, Bunge RP, Glaser L (1980) Studies of Schwann cell proliferation. III. Evidence for the surface localization of the neurite mitogen. J Cell Biol 84(3):767–778CrossRefGoogle Scholar
  22. 22.
    Salzer JL, Williams AK, Glaser L, Bunge RP (1980) Studies of Schwann cell proliferation. II. Characterization of the stimulation and specificity of the response to a neurite membrane fraction. J Cell Biol 84(3):753–766CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Neuroscience and INSPESan Raffaele Scientific InstituteMilanItaly

Personalised recommendations