Advertisement

Myelin pp 81-93 | Cite as

Isolation and Purification of Primary Rodent Schwann Cells

  • Marta Palomo Irigoyen
  • Miguel Tamayo Caro
  • Encarnacion Pérez Andrés
  • Adrián Barreira Manrique
  • Marta Varela Rey
  • Ashwin Woodhoo
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1791)

Abstract

Schwann cells are the main glial cells of the peripheral nervous system (PNS) and play key roles in peripheral nerve development and function, including providing myelin that is essential for normal movement and sensation in the adult. Schwann cells can be readily destabilized by a wide variety of distinct conditions that range from nerve injury to immune assaults, metabolic disturbances, microbial infections, or genetic defects, leading to the breakdown of myelin (demyelination) and a subsequent switch in phenotypic states. This striking feature of Schwann cells forms the cornerstone of several debilitating and even fatal PNS neurological disorders that include the demyelinating neuropathies Guillain Barré syndrome (GBS) and Charcot-Marie-Tooth disease (CMT), and PNS cancers, including Neurofibromatosis.

Primary Schwann cell cultures have proved a valuable tool to dissect key mechanisms that regulate proliferation, survival, differentiation, and myelination of these glial cell types. In this chapter, we describe the steps involved in the isolation and purification of Schwann cells from rodent peripheral nerves and the use of these cultures to model myelination in vitro.

Key words

Schwann cell Sciatic nerve Brachial plexus Cyclic adenosine monophosphate Myelination Demyelination 

Notes

Acknowledgments

AW is grateful for the support of the Ministerio de Economía y Competitividad–Plan Nacional de I+D+I (Subprograma Ramón y Cajal RYC2010-06901; Proyectos Retos Investigación SAF2015-65360-R; Proyectos Explora Ciencia SAF2015-72416-EXP; Proyectos Europa Excelencia SAF2015-62588-ERC), the BBVA foundation and Ikerbasque Foundation. MP is grateful for the support of the Basque Government of Education fellowship. MT is grateful for the support of the “Ayudas para contratos predoctorales para la formación de doctores” from the Ministerio de Economía y Competitividad. MVR is grateful for the support of a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation. CIBERehd is funded by the Instituto de Salud Carlos III. We thank MINECO for the Severo Ochoa Excellence Accreditation (SEV-2016-0644).

References

  1. 1.
    Woodhoo A, Sommer L (2008) Development of the Schwann cell lineage: from the neural crest to the myelinated nerve. Glia 56(14):1481–1490. https://doi.org/10.1002/glia.20723 CrossRefPubMedGoogle Scholar
  2. 2.
    Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6(9):683–690. https://doi.org/10.1038/nrn1743 CrossRefPubMedGoogle Scholar
  3. 3.
    Nave KA, Sereda MW, Ehrenreich H (2007) Mechanisms of disease: inherited demyelinating neuropathies—from basic to clinical research. Nat Clin Pract Neurol 3(8):453–464. https://doi.org/10.1038/ncpneuro0583 CrossRefPubMedGoogle Scholar
  4. 4.
    Jessen KR, Mirsky R, Lloyd AC (2015) Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol 7:a020487CrossRefGoogle Scholar
  5. 5.
    Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6(9):671–682. https://doi.org/10.1038/nrn1746 CrossRefPubMedGoogle Scholar
  6. 6.
    Woodhoo A, Alonso MB, Droggiti A, Turmaine M, D'Antonio M, Parkinson DB, Wilton DK, Al-Shawi R, Simons P, Shen J, Guillemot F, Radtke F, Meijer D, Feltri ML, Wrabetz L, Mirsky R, Jessen KR (2009) Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat Neurosci 12(7):839–847. https://doi.org/10.1038/nn.2323 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E, Banerjee A, Woodhoo A, Jenkins B, Rahman M, Turmaine M, Wicher GK, Mitter R, Greensmith L, Behrens A, Raivich G, Mirsky R, Jessen KR (2012) c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75(4):633–647. https://doi.org/10.1016/j.neuron.2012.06.021 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Arthur-Farraj P, Wanek K, Hantke J, Davis CM, Jayakar A, Parkinson DB, Mirsky R, Jessen KR (2011) Mouse schwann cells need both NRG1 and cyclic AMP to myelinate. Glia 59(5):720–733. https://doi.org/10.1002/glia.21144 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dennert G, Hyman R (1980) Functional Thy-1+ cells in cultures of spleen cells from nu/nu mice. Eur J Immunol 10(8):583–589. https://doi.org/10.1002/eji.1830100803 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marta Palomo Irigoyen
    • 1
  • Miguel Tamayo Caro
    • 1
  • Encarnacion Pérez Andrés
    • 1
  • Adrián Barreira Manrique
    • 1
  • Marta Varela Rey
    • 2
  • Ashwin Woodhoo
    • 3
    • 4
  1. 1.Nerve Disorders LaboratoryCIC bioGUNEDerioSpain
  2. 2.Liver disease Laboratory, Liver metabolism LaboratoryCIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)DerioSpain
  3. 3.Nerve Disorders LaboratoryCIC bioGUNEDerioSpain
  4. 4.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations