Advertisement

Myelin pp 37-50 | Cite as

Lipidomics Profiling of Myelin

  • Chunyan Wang
  • Juan Pablo Palavicini
  • Xianlin Han
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1791)

Abstract

Lipidomics is a powerful approach that can provide quantitative characterization of hundreds of lipid species from biological samples. Recent studies have highlighted the value of lipidomics to study myelin biology. This chapter provides a detailed description for the application of multidimensional mass spectrometry shotgun lipidomics (MDMS-SL) to neuroscience research and particularly to the analysis of brain lipidomes with a particular emphasis on myelin lipids, from sample preparation to bioinformatics analyses. Sample preparation includes brain sample harvesting, homogenization, and lipid extraction. Lipid content is determined and quantified, in an unbiased manner and with wide coverage, using MDMS-SL. Overall, the approach described herein is applicable for whole brain tissue or specific brain regions (e.g., hippocampus, cerebellum), and is expected to yield new insights on various aspects of myelin biology and lipid metabolism.

Key words

Shotgun lipidomics Mass spectrometry Myelin Brain Lipid metabolism 

Notes

Acknowledgments

This work was partially supported by National Institute of General Medical Sciences Grant R01 GM105724, the American Diabetes Association Grant #7-15-MI-07, and intramural institutional research funds.

References

  1. 1.
    van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124. https://doi.org/10.1038/nrm2330 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44(6):1071–1079. https://doi.org/10.1194/jlr.R300004-JLR200 CrossRefPubMedGoogle Scholar
  3. 3.
    Lagarde M, Geloen A, Record M, Vance D, Spener F (2003) Lipidomics is emerging. Biochim Biophys Acta 1634(3):61CrossRefGoogle Scholar
  4. 4.
    Han X, Gross RW (2001) Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 295(1):88–100. https://doi.org/10.1006/abio.2001.5178 CrossRefPubMedGoogle Scholar
  5. 5.
    Han X, Gross RW (2005) Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev Proteomics 2(2):253–264. https://doi.org/10.1586/14789450.2.2.253 CrossRefPubMedGoogle Scholar
  6. 6.
    Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24(3):367–412. https://doi.org/10.1002/mas.20023 CrossRefPubMedGoogle Scholar
  7. 7.
    Han X, Yang J, Cheng H, Ye H, Gross RW (2004) Toward fingerprinting cellular lipidomes directly from biological samples by two-dimensional electrospray ionization mass spectrometry. Anal Biochem 330(2):317–331. https://doi.org/10.1016/j.ab.2004.04.004 CrossRefGoogle Scholar
  8. 8.
    Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31(1):134–178. https://doi.org/10.1002/mas.20342 CrossRefPubMedGoogle Scholar
  9. 9.
    Yang K, Cheng H, Gross RW, Han X (2009) Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics. Anal Chem 81(11):4356–4368. https://doi.org/10.1021/ac900241u CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cheng H, Zhou Y, Holtzman DM, Han X (2010) Apolipoprotein E mediates sulfatide depletion in animal models of Alzheimer's disease. Neurobiol Aging 31(7):1188–1196. https://doi.org/10.1016/j.neurobiolaging.2008.07.020 CrossRefPubMedGoogle Scholar
  11. 11.
    Han X (2010) Multi-dimensional mass spectrometry-based shotgun lipidomics and the altered lipids at the mild cognitive impairment stage of Alzheimer's disease. Biochim Biophys Acta 1801(8):774–783. https://doi.org/10.1016/j.bbalip.2010.01.010 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Han X (2010) The pathogenic implication of abnormal interaction between apolipoprotein E isoforms, amyloid-beta peptides, and sulfatides in Alzheimer's disease. Mol Neurobiol 41(2–3):97–106. https://doi.org/10.1007/s12035-009-8092-x CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cheng H, Jiang X, Han X (2007) Alterations in lipid homeostasis of mouse dorsal root ganglia induced by apolipoprotein E deficiency: a shotgun lipidomics study. J Neurochem 101(1):57–76. https://doi.org/10.1111/j.1471-4159.2006.04342.x CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jiang X, Cheng H, Yang K, Gross RW, Han X (2007) Alkaline methanolysis of lipid extracts extends shotgun lipidomics analyses to the low-abundance regime of cellular sphingolipids. Anal Biochem 371(2):135–145. https://doi.org/10.1016/j.ab.2007.08.019 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zeng Y, Cheng H, Jiang X, Han X (2008) Endosomes and lysosomes play distinct roles in sulfatide-induced neuroblastoma apoptosis: potential mechanisms contributing to abnormal sulfatide metabolism in related neuronal diseases. Biochem J 410(1):81–92. https://doi.org/10.1042/BJ20070976 CrossRefPubMedGoogle Scholar
  16. 16.
    Yang K, Zhao Z, Gross RW, Han X (2007) Shotgun lipidomics identifies a paired rule for the presence of isomeric ether phospholipid molecular species. PLoS One 2(12):e1368. https://doi.org/10.1371/journal.pone.0001368 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Elliott DA, Weickert CS, Garner B (2010) Apolipoproteins in the brain: implications for neurological and psychiatric disorders. Clin Lipidol 51(4):555–573. https://doi.org/10.2217/CLP.10.37 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Han X (2007) Neurolipidomics: challenges and developments. Front Biosci 12:2601–2615CrossRefGoogle Scholar
  19. 19.
    Piomelli D, Astarita G, Rapaka R (2007) A neuroscientist's guide to lipidomics. Nat Rev Neurosci 8(10):743–754. https://doi.org/10.1038/nrn2233 CrossRefPubMedGoogle Scholar
  20. 20.
    Morell P, Quarles RH (1999) Characteristic composition of myelin. In: Siegel GJ, Agranoff BW, Albers RW et al (eds) Basic neurochemistry: molecular, cellular and medical aspects. Lippincott-Raven, Philadelphia, PAGoogle Scholar
  21. 21.
    Norton WT, Poduslo SE (1973) Myelination in rat brain: changes in myelin composition during brain maturation. J Neurochem 21(4):759–773CrossRefGoogle Scholar
  22. 22.
    Han X, Holtzman DM, McKeel DW Jr (2001) Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 77(4):1168–1180CrossRefGoogle Scholar
  23. 23.
    Yang K, Fang X, Gross RW, Han X (2011) A practical approach for determination of mass spectral baselines. J Am Soc Mass Spectrom 22(11):2090–2099. https://doi.org/10.1007/s13361-011-0229-2 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Han X (2016) Lipidomics for studying metabolism. Nat Rev Endocrinol 12(11):668–679. https://doi.org/10.1038/nrendo.2016.98 CrossRefPubMedGoogle Scholar
  25. 25.
    Han X, Yang K, Yang J, Cheng H, Gross RW (2006) Shotgun lipidomics of cardiolipin molecular species in lipid extracts of biological samples. J Lipid Res 47(4):864–879. https://doi.org/10.1194/jlr.D500044-JLR200 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chunyan Wang
    • 1
  • Juan Pablo Palavicini
    • 1
  • Xianlin Han
    • 1
  1. 1.Barshop Institute for Longevity and Aging Studies, University of Texas Health San AntonioSan AntonioUSA

Personalised recommendations