Advertisement

Myelin pp 145-156 | Cite as

Organotypic Slice Cultures to Study Oligodendrocyte Proliferation, Fate, and Myelination

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1791)

Abstract

Oligodendrocyte development and myelination are processes in the central nervous system that are regulated by cell intrinsic and extrinsic mechanisms. Organotypic slice cultures provide a simple method for studying factors that affect oligodendrocyte proliferation, differentiation, and myelination in the context of the local cellular environment. Here we show that major glial cell types and neurons are preserved in slice cultures from postnatal mouse forebrain, and their morphological characteristics are retained. We further demonstrate that cellular processes requiring interactions with neighboring cells such as myelination can proceed in slice culture.

Key words

Oligodendrocyte Myelin Oligodendrocyte precursor NG2 PDGF Pdgfrα Proliferation Organotypic slice culture 

Notes

Acknowledgments

This work was supported by grants from NIH (R01 NS073425 and R01 NS074870) to AN. We thank Youfen Sun for maintaining the transgenic mouse colony.

References

  1. 1.
    Dawson MR, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24(2):476–488CrossRefGoogle Scholar
  2. 2.
    Hill RA, Nishiyama A (2014) NG2 cells (polydendrocytes): listeners to the neural network with diverse properties. Glia 62(8):1195–1210. https://doi.org/10.1002/glia.22664 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nishiyama A (2007) Polydendrocytes: NG2 cells with many roles in development and repair of the CNS. Neuroscientist 13(1):62–76. https://doi.org/10.1177/1073858406295586 CrossRefPubMedGoogle Scholar
  4. 4.
    Nishiyama A, Komitova M, Suzuki R, Zhu X (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 10(1):9–22CrossRefGoogle Scholar
  5. 5.
    Dimou L, Simon C, Kirchhoff F, Takebayashi H, Gotz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28(41):10434–10442CrossRefGoogle Scholar
  6. 6.
    Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE (2010) NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68(4):668–681CrossRefGoogle Scholar
  7. 7.
    Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L, Attwell D, Tohyama K, Richardson WD (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77(5):873–885. https://doi.org/10.1016/j.neuron.2013.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhu X, Hill RA, Dietrich D, Komitova M, Suzuki R, Nishiyama A (2011) Age-dependent fate and lineage restriction of single NG2 cells. Development 138(4):745–753. https://doi.org/10.1242/dev.047951 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Power J, Mayer-Proschel M, Smith J, Noble M (2002) Oligodendrocyte precursor cells from different brain regions express divergent properties consistent with the differing time courses of myelination in these regions. Dev Biol 245(2):362–375. https://doi.org/10.1006/dbio.2002.0610 CrossRefPubMedGoogle Scholar
  10. 10.
    Fanarraga ML, Griffiths IR, Zhao M, Duncan ID (1998) Oligodendrocytes are not inherently programmed to myelinate a specific size of axon. J Comp Neurol 399(1):94–100CrossRefGoogle Scholar
  11. 11.
    Vigano F, Mobius W, Gotz M, Dimou L (2013) Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat Neurosci 16(10):1370–1372. https://doi.org/10.1038/nn.3503 CrossRefPubMedGoogle Scholar
  12. 12.
    Harrison RG (1907) Observations on the living developing nerve fiber. Proc Soc. Biol Med 4:140–143CrossRefGoogle Scholar
  13. 13.
    Peterson ER, Murray MR (1955) Myelin sheath formation in cultures of avian spinal ganglia. Am J Anat 96(3):319–355. https://doi.org/10.1002/aja.1000960302 CrossRefPubMedGoogle Scholar
  14. 14.
    Hild W (1957) Myelogenesis in cultures of mammalian central nervous tissue. Z Zellforsch Mikrosk Anat 46(1):71–95CrossRefGoogle Scholar
  15. 15.
    Bornstein MB, Murray MR (1958) Serial observations on patterns of growth, myelin formation, maintenance and degeneration in cultures of new-born rat and kitten cerebellum. J Biophys Biochem Cytol 4(5):499–504CrossRefGoogle Scholar
  16. 16.
    Ross LL, Bornstein MB, Lehrer GM (1962) Electron microscopic observations of rat and mouse cerebellum in tissue culture. J Cell Biol 14:19–30CrossRefGoogle Scholar
  17. 17.
    Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37(2):173–182CrossRefGoogle Scholar
  18. 18.
    Bahr BA, Kessler M, Rivera S, Vanderklish PW, Hall RA, Mutneja MS, Gall C, Hoffman KB (1995) Stable maintenance of glutamate receptors and other synaptic components in long-term hippocampal slices. Hippocampus 5(5):425–439. https://doi.org/10.1002/hipo.450050505 CrossRefPubMedGoogle Scholar
  19. 19.
    Cho S, Liu D, Fairman D, Li P, Jenkins L, McGonigle P, Wood A (2004) Spatiotemporal evidence of apoptosis-mediated ischemic injury in organotypic hippocampal slice cultures. Neurochem Int 45(1):117–127. https://doi.org/10.1016/j.neuint.2003.11.012 CrossRefPubMedGoogle Scholar
  20. 20.
    Pringle AK, Sundstrom LE, Wilde GJ, Williams LR, Iannotti F (1996) Brain-derived neurotrophic factor, but not neurotrophin-3, prevents ischaemia-induced neuronal cell death in organotypic rat hippocampal slice cultures. Neurosci Lett 211(3):203–206CrossRefGoogle Scholar
  21. 21.
    Ray AM, Owen DE, Evans ML, Davis JB, Benham CD (2000) Caspase inhibitors are functionally neuroprotective against oxygen glucose deprivation induced CA1 death in rat organotypic hippocampal slices. Brain Res 867(1-2):62–69CrossRefGoogle Scholar
  22. 22.
    Hill RA, Patel KD, Medved J, Reiss AM, Nishiyama A (2013) NG2 cells in white matter but not gray matter proliferate in response to PDGF. J Neurosci 33(36):14558–14566. https://doi.org/10.1523/JNEUROSCI.2001-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hill RA, Patel KD, Goncalves CM, Grutzendler J, Nishiyama A (2014) Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat Neurosci 17(11):1518–1527. https://doi.org/10.1038/nn.3815 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hill RA, Medved J, Patel KD, Nishiyama A (2014) Organotypic slice cultures to study oligodendrocyte dynamics and myelination. J Vis Exp 90:e51835. https://doi.org/10.3791/51835 CrossRefGoogle Scholar
  25. 25.
    Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135(1):145–157CrossRefGoogle Scholar
  26. 26.
    Sturrock RR (1980) Myelination in the mouse corpus callosum. Neuropathol Appl Neurobiol 6(6):415–420.CrossRefGoogle Scholar
  27. 27.
    Novak A, Guo C, Yang W, Nagy A, Lobe CG (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28(3-4):147–155CrossRefGoogle Scholar
  28. 28.
    Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4CrossRefGoogle Scholar
  29. 29.
    Zhu X, Zuo H, Maher BJ, Serwanski DR, LoTurco JJ, Lu QR, Nishiyama A (2012) Olig2-dependent developmental fate switch of NG2 cells. Development 139(13):2299–2307. https://doi.org/10.1242/dev.078873 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zuo H, Hill RA, Sherafat AM, Lu QR, Nishiyama A (2018) Age-dependent decline in fate switch from NG2 cells to astrocytes after Olig2 deletion. J Neurosci 38(9):2359–2371CrossRefGoogle Scholar
  31. 31.
    Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609. https://doi.org/10.1016/j.cell.2013.11.030 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mallon BS, Shick HE, Kidd GJ, Macklin WB (2002) Proteolipid promoter activity distinguishes two populations of NG2-positive cells throughout neonatal cortical development. J Neurosci 22(3):876–885CrossRefGoogle Scholar
  33. 33.
    Hirrlinger PG, Scheller A, Braun C, Quintela-Schneider M, Fuss B, Hirrlinger J, Kirchhoff F (2005) Expression of reef coral fluorescent proteins in the central nervous system of transgenic mice. Mol Cell Neurosci 30(3):291–303. https://doi.org/10.1016/j.mcn.2005.08.011 CrossRefPubMedGoogle Scholar
  34. 34.
    Haber M, Vautrin S, Fry EJ, Murai KK (2009) Subtype-specific oligodendrocyte dynamics in organotypic culture. Glia 57(9):1000–1013. https://doi.org/10.1002/glia.20824 CrossRefPubMedGoogle Scholar
  35. 35.
    Hussain R, Ghoumari AM, Bielecki B, Steibel J, Boehm N, Liere P, Macklin WB, Kumar N, Habert R, Mhaouty-Kodja S, Tronche F, Sitruk-Ware R, Schumacher M, Ghandour MS (2013) The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain 136(Pt 1):132–146. https://doi.org/10.1093/brain/aws284 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Najm FJ, Lager AM, Zaremba A, Wyatt K, Caprariello AV, Factor DC, Karl RT, Maeda T, Miller RH, Tesar PJ (2013) Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol 31(5):426–433. https://doi.org/10.1038/nbt.2561 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Barateiro A, Fernandes A (2014) Temporal oligodendrocyte lineage progression: in vitro models of proliferation, differentiation and myelination. Biochim Biophys Acta 1843(9):1917–1929. https://doi.org/10.1016/j.bbamcr.2014.04.018 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amin Sherafat
    • 2
  • Robert A. Hill
    • 1
    • 2
    • 3
  • Akiko Nishiyama
    • 2
    • 4
    • 5
  1. 1.Department of Biological SciencesDartmouth CollegeHanoverUSA
  2. 2.Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUSA
  3. 3.Department of NeurologyYale School of MedicineNew HavenUSA
  4. 4.Institute of Systems GenomicsUniversity of ConnecticutStorrsUSA
  5. 5.Institute of Brain and Cognitive ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations