Ecological Context and Human Variation: Applying the Principles of Biological Anthropology to Psychoneuroimmunology

  • Eric C. ShattuckEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1781)


There is considerable research interest overlap between biological anthropology and psychoneuroimmunology (PNI), particularly given recent anthropological interest in endocrine and immune system functioning over the life span and in different environmental contexts. In this chapter, I argue that conducting research on non-WEIRD populations and applying an anthropological, evolutionary approach to PNI can greatly strengthen our understanding of immune-endocrine-behavior connections. This chapter reviews population-level variation in the human immune and endocrine systems, as well as genetic and environmental contributions to this variation. The effects of culture on shaping health outcomes and stress responses are also considered. Finally, this chapter discusses some noninvasive sampling methodologies appropriate to field research and alternatives to laboratory-based research designs. By confronting variable social and environmental contexts, PNI can greatly expand on its existing contributions to the treatment and understanding of depression, mood disorders, stress, and other aspects of health and well-being.

Key words

Psychoneuroimmunology Life history theory Human biological variation Ecoimmunology Hormones Stress Culture Methods 


  1. 1.
    McDade TW (2001) Lifestyle incongruity, social integration, and immune function in Samoan adolescents. Soc Sci Med 53:1351–1362PubMedCrossRefGoogle Scholar
  2. 2.
    McDade TW, Stallings JF, Worthman CM (2000) Culture change and stress in Western Samoan youth: methodological issues in the cross-cultural study of stress and immune function. Am J Hum Biol 12:792–802PubMedCrossRefGoogle Scholar
  3. 3.
    Demas GE, Carlton ED (2015) Ecoimmunology for psychoneuroimmunologists: considering context in neuroendocrine-immune-behavior interactions. Brain Behav Immun 44:9–16PubMedCrossRefGoogle Scholar
  4. 4.
    Segerstrom SC (2010) Resources, stress, and immunity: an ecological perspective on human psychoneuroimmunology. Ann Behav Med 40:114–125PubMedCrossRefGoogle Scholar
  5. 5.
    Boas F (1912) Changes in the bodily form of the descendants of immigrants. Am Anthropol 14:530–562CrossRefGoogle Scholar
  6. 6.
    Little M (2010) History of the study of human biology. In: Muehlenbein M (ed) Human evolutionary biology. Cambridge University Press, New York, pp 29–48CrossRefGoogle Scholar
  7. 7.
    Frisancho AR (1977) Developmental adaptation to high altitude hypoxia. Int J Biometeorol 21:135–146PubMedCrossRefGoogle Scholar
  8. 8.
    Simonson TS, McClain DA, Jorde LB et al (2012) Genetic determinants of Tibetan high-altitude adaptation. Hum Genet 131:527–533PubMedCrossRefGoogle Scholar
  9. 9.
    Straub RH, Del Rey A, Besedovsky HO (2007) Emerging concepts for the pathogenesis of chronic disabling inflammatory diseases: neuroendocrine-immune interactions and evolutionary biology. In: Ader R (ed) Psychoneuroimmunology. Elsevier, San Diego, CA, pp 217–232CrossRefGoogle Scholar
  10. 10.
    Anders S, Tanaka M, Kinney DK (2013) Depression as an evolutionary strategy for defense against infection. Brain Behav Immun 31:9–22PubMedCrossRefGoogle Scholar
  11. 11.
    Dhabhar FS (2002) Stress-induced augmentation of immune function—the role of stress hormones, leukocyte trafficking, and cytokines. Brain Behav Immun 16:785–798PubMedCrossRefGoogle Scholar
  12. 12.
    McDade TW, Reyes García V, Tanner S et al (2008) Maintenance versus growth: investigating the costs of immune activation among children in lowland Bolivia. Am J Phys Anthropol 136:478–484PubMedCrossRefGoogle Scholar
  13. 13.
    Gibson MA, Lawson DW (2014) Applying evolutionary anthropology to a changing world. In: Gibson MA, Lawson DW (eds) Applied evolutionary anthropology: Darwinian approaches to contemporary world issues. Springer, New York, pp 1–11CrossRefGoogle Scholar
  14. 14.
    Henrich J, Heine SJ, Norenzayan A (2010) The weirdest people in the world? Behav Brain Sci 33:61–83PubMedCrossRefGoogle Scholar
  15. 15.
    Gurven M, Stieglitz J, Trumble B et al (2017) The Tsimane health and life history project: integrating anthropology and biomedicine. Evol Anthropol 26:54–73PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Marlowe FW (2010) The Hadza: hunter-gatherers of Tanzania. University of California Press, BerkeleyGoogle Scholar
  17. 17.
    Blurton Jones N (2016) Demography and evolutionary ecology of Hadza hunter-gatherers. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. 18.
    Hill K, Hurtado AM (1996) Ache life history: the ecology and demography of a foraging people. Aldine de Gruyter, New YorkGoogle Scholar
  19. 19.
    Flinn MV (2008) Why words can hurt us: social relationships, stress, and health. In: Trevathan W, Smith EO, McKenna J (eds) Evolutionary medicine and health. Oxford University Press, Oxford, pp 247–258Google Scholar
  20. 20.
    Stieglitz J, Trumble BC, Thompson ME et al (2015) Depression as sickness behavior? A test of the host defense hypothesis in a high pathogen population. Brain Behav Immun 49:130–139PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Blackwell AD, Trumble BC, Maldonado Suarez I et al (2016) Immune function in Amazonian horticulturalists. Ann Hum Biol 43:382–396PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Blackwell AD, Gurven MD, Sugiyama LS et al (2011) Evidence for a peak shift in a humoral response to helminths: age profiles of IgE in the Shuar of Ecuador, the Tsimane of Bolivia, and the US NHANES. PLoS Negl Trop Dis 5:e1218PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Flinn MV, England BG (2003) Childhood stress: endocrine and immune responses to psychosocial events. In: Wilce JM (ed) Social and cultural lives of immune systems. Routledge Press, London, pp 107–147Google Scholar
  24. 24.
    Ellison PT, Bribiescas RG, Bentley GR et al (2002) Population variation in age-related decline in male salivary testosterone. Hum Reprod 17:3251–3253PubMedCrossRefGoogle Scholar
  25. 25.
    Rohrmann S, Nelson WG, Rifai N et al (2007) Serum estrogen, but not testosterone, levels differ between black and white men in a nationally representative sample of Americans. J Clin Endocrinol Metab 92:2519–2525PubMedCrossRefGoogle Scholar
  26. 26.
    Lopez DS, Peskoe SB, Joshu CE et al (2013) Racial/ethnic differences in serum sex steroid hormone concentrations in US adolescent males. Cancer Causes Control 24:817–826PubMedCrossRefGoogle Scholar
  27. 27.
    Carlton ED, Demas GE (2014) Leptin mediates seasonal variation in some but not all symptoms of sickness in Siberian hamsters. Horm Behav 66:802–811PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Lilja M, Rolandsson O, Shaw JE et al (2010) Higher leptin levels in Asian Indians than Creoles and Europids: a potential explanation for increased metabolic risk. Int J Obes Relat Metab Disord 34:878–885CrossRefGoogle Scholar
  29. 29.
    Bribiescas RG (2005) Serum leptin levels in Ache Amerindian females with normal adiposity are not significantly different from American anorexia nervosa patients. Am J Hum Biol 17:207–210PubMedCrossRefGoogle Scholar
  30. 30.
    Baerwald CG, Mok CC, Fife MS et al (1999) Distribution of corticotropin-releasing hormone promoter polymorphism in different ethnic groups: evidence for natural selection in human populations. Immunogenetics 49:894–899PubMedCrossRefGoogle Scholar
  31. 31.
    Kelley-Hedgepeth A, Lloyd-Jones DM, Colvin A et al (2008) Ethnic differences in C-reactive protein concentrations. Clin Chem 54:1027–1037PubMedCrossRefGoogle Scholar
  32. 32.
    Gurven M, Kaplan H, Crimmins E et al (2008) Lifetime inflammation in two epidemiological worlds: the Tsimane of Bolivia and the United States. J Gerontol A Biol Sci Med Sci 63A:196–199CrossRefGoogle Scholar
  33. 33.
    Dujuardi Y, Sartono E, Wibowo H et al (2010) A longitudinal study of BCG vaccination in early childhood: the development of innate and adaptive immune responses. PLoS One 5:e14066CrossRefGoogle Scholar
  34. 34.
    Lalor MK, Floyd S, Gorak-Stolinska P et al (2011) BCG vaccination induces different cytokine profiles following infant BCG vaccination in the UK and Malawi. J Infect Dis 204:1075–1085PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kollmann TR (2013) Variation between populations in the innate immune response to vaccine adjuvants. Front Immunol 4:81PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Bucasas KL, Franco LM, Shaw CA et al (2011) Early patterns of gene expression correlate with the humoral immune response to influenza vaccination in humans. J Infect Dis 203:921–929PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gallagher G, Eskdale J, Bidwell JL (2003) Cytokine genetics: polymorphisms, functional variations, and disease associations. In: Thomas AW, Lotze MT (eds) The cytokine handbook. Academic Press, London, pp 19–57CrossRefGoogle Scholar
  38. 38.
    Doyle WJ, Casselbrant ML, Li-Korotky H-S et al (2010) The interleukin 6 -174 C/C genotype predicts greater rhinovirus illness. J Infect Dis 201:199–206PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bull SJ, Huezo-Diaz P, Binder EB et al (2008) Functional polymorphisms in the interleukin-6 and serotonin transporter genes, and depression and fatigue induced by interferon-α and ribavirin treatment. Mol Psychiatry 14:1095–1104PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Piraino B, Vollmer-Conna U, Lloyd AR (2012) Genetic associations of fatigue and other symptom domains of the acute sickness response to infection. Brain Behav Immun 26:552–558PubMedCrossRefGoogle Scholar
  41. 41.
    Vollmer-Conna U, Piraino BF, Cameron B et al (2008) Cytokine polymorphisms have a synergistic effect on severity of the acute sickness response to infection. Clin Infect Dis 47:1418–1425PubMedCrossRefGoogle Scholar
  42. 42.
    Berger FG (2004) The interleukin-6 gene: a susceptibility factor that may contribute to racial and ethnic disparities in breast cancer mortality. Breast Cancer Res Treat 88:281–285PubMedCrossRefGoogle Scholar
  43. 43.
    Shattuck EC, Muehlenbein MP (2015) Human sickness behavior: ultimate and proximate explanations. Am J Phys Anthropol 157:1–18PubMedCrossRefGoogle Scholar
  44. 44.
    Russcher H, Smit P, van den Akker ELT et al (2005) Two polymorphisms in the glucocorticoid receptor gene directly affect glucocorticoid-regulated gene expression. J Clin Endocrinol Metab 90:5804–5810PubMedCrossRefGoogle Scholar
  45. 45.
    Russcher H, van Rossum EFC, de Jong FH et al (2005) Increased expression of the glucocorticoid receptor-a translational isoform as a result of the ER22/23EK polymorphism. Mol Endocrinol 19:1687–1696PubMedCrossRefGoogle Scholar
  46. 46.
    Derijk RH, De Kloet ER (2008) Corticosteroid receptor polymorphisms: determinants of vulnerability and resilience. Eur J Pharmacol 583:303–311PubMedCrossRefGoogle Scholar
  47. 47.
    Derijk RH (2009) Single nucleotide polymorphisms related to HPA axis reactivity. Neuroimmunomodulation 16:340–352PubMedCrossRefGoogle Scholar
  48. 48.
    Rohleder N, Kirschbaum C (2007) Effects of nutrition on neuro-endocrine stress responses. Curr Opin Clin Nutr Metab Care 10:504–510PubMedCrossRefGoogle Scholar
  49. 49.
    Ritz BW, Gardner EM (2006) Malnutrition and energy restriction differentially affect viral immunity. J Nutr 136:1141–1144PubMedCrossRefGoogle Scholar
  50. 50.
    Gurven M, Kaplan H, Winking J et al (2009) Inflammation and infection do not promote arterial aging and cardiovascular disease risk factors among lean horticulturalists. PLoS One 4:e6590PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    McDade TW, Rutherford J, Adair L et al (2010) Early origins of inflammation: microbial exposures in infancy predict lower levels of C-reactive protein in adulthood. Proc Biol Sci 277:1129–1137PubMedCrossRefGoogle Scholar
  52. 52.
    Lisciandro JG, Prescott SL, Nadal-Sims MG et al (2012) Neonatal antigen-presenting cells are functionally more quiescent in children born under traditional compared with modern environmental conditions. J Allergy Clin Immunol 130:1167–1174PubMedCrossRefGoogle Scholar
  53. 53.
    McDade TW, Hoke M, Borja JB et al (2013) Do environments in infancy moderate the association between stress and inflammation in adulthood? Initial evidence from a birth cohort in the Philippines. Brain Behav Immun 31:23–30PubMedCrossRefGoogle Scholar
  54. 54.
    McDade TW, Borja JB, Adair LS et al (2012) Depressive symptoms are not associated with inflammation in younger and older adults in the Philippines. Evol Med Public Health 2013:18–23PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88:87–98CrossRefGoogle Scholar
  56. 56.
    Cordain L, Eaton SB, Sebastian A et al (2005) Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 81:341–354PubMedCrossRefGoogle Scholar
  57. 57.
    Maes M, Christophe A, Bosmans E et al (2000) In humans, serum polyunsaturated fatty acid levels predict the response of proinflammatory cytokines to psychologic stress. Biol Psychiatry 47:910–920PubMedCrossRefGoogle Scholar
  58. 58.
    Kiecolt-Glaser JK, Belury MA, Porter K et al (2007) Depressive symptoms, omega-6:omega-3 fatty acids, and inflammation in older adults. Psychosom Med 69:217–224PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Fabris N, Mocchegiani E, Muzzioli M et al (1991) The role of zinc in neuroendocrine-immune interactions during aging. Ann N Y Acad Sci 621:314–326PubMedCrossRefGoogle Scholar
  60. 60.
    Samartın S, Chandra RK (2001) Obesity, overnutrition and the immune system. Nutr Res 21:243–262CrossRefGoogle Scholar
  61. 61.
    Singer MK, Dressler W, George S et al (2016) Culture: the missing link in health research. Soc Sci Med 170:237–246CrossRefGoogle Scholar
  62. 62.
    Deisenhammer EA, Çoban-Başaran M, Mantar A et al (2011) Ethnic and migrational impact on the clinical manifestation of depression. Soc Psychiatry Psychiatr Epidemiol 47:1121–1129PubMedCrossRefGoogle Scholar
  63. 63.
    Kalibatseva Z, Leong FTL, Ham EH (2014) A symptom profile of depression among Asian Americans: is there evidence for differential item functioning of depressive symptoms? Psychol Med 44:2567–2578PubMedCrossRefGoogle Scholar
  64. 64.
    Abdullah T, Brown TL (2011) Mental illness stigma and ethnocultural beliefs, values, and norms: an integrative review. Clin Psychol Rev 31:934–948PubMedCrossRefGoogle Scholar
  65. 65.
    Gravlee CC, Dressler WW (2005) Skin pigmentation, self-perceived color, and arterial blood pressure in Puerto Rico. Am J Hum Biol 17:195–206PubMedCrossRefGoogle Scholar
  66. 66.
    Gravlee CC, Non AL, Mulligan CJ (2009) Genetic ancestry, social classification, and racial inequalities in blood pressure in Southeastern Puerto Rico. PLoS One 4:e6821PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lewis M, Ramsay DS, Kawakami K (1993) Differences between Japanese infants and Caucasian American infants in behavioral and cortisol response to inoculation. Child Dev 64:1722–1731PubMedCrossRefGoogle Scholar
  68. 68.
    Doan SN, Tardif T, Miller A et al (2017) Consequences of ‘tiger’ parenting: a cross-cultural study of maternal psychological control and children’s cortisol stress response. Dev Sci 20:e12404CrossRefGoogle Scholar
  69. 69.
    Souza-Talarico JN, Plusquellec P, Lupien SJ et al (2014) Cross-country differences in basal and stress-induced cortisol secretion in older adults. PLoS One 9:e105968PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Adam EK, Heissel JA, Zeiders KH et al (2015) Developmental histories of perceived racial discrimination and diurnal cortisol profiles in adulthood: a 20-year prospective study. Psychoneuroendocrinology 62:279–291PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Rao D, Feinglass J, Corrigan P (2007) Racial and ethnic disparities in mental illness stigma. J Nerv Ment Dis 195:734–744CrossRefGoogle Scholar
  72. 72.
    Rahim-Williams B, Riley JL 3rd, Williams AKK et al (2012) A quantitative review of ethnic group differences in experimental pain response: do biology, psychology, and culture matter? Pain Med 13:522–540PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Fillingim RB, Kaplan L, Staud R et al (2005) The A118G single nucleotide polymorphism of the mu-opioid receptor gene (OPRM1) is associated with pressure pain sensitivity in humans. J Pain 6:159–167PubMedCrossRefGoogle Scholar
  74. 74.
    Nielsen CS, Stubhaug A, Price DD et al (2008) Individual differences in pain sensitivity: genetic and environmental contributions. Pain 136:21–29PubMedCrossRefGoogle Scholar
  75. 75.
    Mechlin B, Morrow AL, Maixner W et al (2005) African Americans show alterations in endogenous pain regulatory mechanisms and reduced pain tolerance to experimental pain procedures. Psychosom Med 62:517–523Google Scholar
  76. 76.
    Calvillo ER (2013) Insights on the pain experience in Mexican Americans. In: Incayawar M, Todd K (eds) Culture, brain, and analgesia. Oxford University Press, New York, pp 49–61Google Scholar
  77. 77.
    Incayawar M, Maldonado-Bouchard S (2013) We feel pain too: asserting the pain experience of the Quichua people. In: Incayawar M, Todd K (eds) Culture, brain, and analgesia. Oxford University Press, New York, pp 61–75Google Scholar
  78. 78.
    Gonzalez-Swafford MJ, Gutierrez MG (1983) Ethno-medical beliefs and practices of Mexican-Americans. Nurse Pract 8:29–34PubMedCrossRefGoogle Scholar
  79. 79.
    Pacheco CM, Daley SM, Brown T et al (2013) Moving forward: breaking the cycle of mistrust between American Indians and researchers. Am J Public Health 103:2152–2159PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Rathnayake N, Åkerman S, Klinge B et al (2013) Salivary biomarkers of oral health: a cross-sectional study. J Clin Periodontol 40:140–147PubMedCrossRefGoogle Scholar
  81. 81.
    Teles RP, Likhari V, Socransky SS et al (2009) Salivary cytokine levels in chronic periodontitis and periodontally health subjects. A cross-sectional study. J Periodontal Res 44:411–417PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    McCullough ME, Churchland PS, Mendez AJ (2013) Problems with measuring peripheral oxytocin: can the data on oxytocin and human behavior be trusted? Neurosci Biobehav Rev 37:1485–1492PubMedCrossRefGoogle Scholar
  83. 83.
    McDade TW (2013) Development and validation of assay protocols for use with dried blood spot samples. Am J Hum Biol 26:1–9PubMedCrossRefGoogle Scholar
  84. 84.
    McDade TW, Williams S, Snodgrass JJ (2007) What a drop can do: dried blood spots as a minimally invasive method for integrating biomarkers into population-based research. Demography 44:899–925PubMedCrossRefGoogle Scholar
  85. 85.
    Chiappin S, Antonelli G, Gatti R et al (2007) Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta 383:30–40PubMedCrossRefGoogle Scholar
  86. 86.
    Kirschbaum C, Hellhammer DH (1994) Salivary cortisol in psychoneuroendocrine research: recent developments and applications. Psychoneuroendocrinology 19:313–333PubMedCrossRefGoogle Scholar
  87. 87.
    Muehlenbein MP, Prall SP, Chester E (2011) Development of a noninvasive salivary measure of functional immunity in humans. Am J Hum Biol 23:267–268Google Scholar
  88. 88.
    Demas GE, Zysling DA, Beechler BR et al (2011) Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. J Anim Ecol 80:710–730PubMedCrossRefGoogle Scholar
  89. 89.
    Lima DP, Diniz DG, Moimaz SAS et al (2010) Saliva: reflection of the body. Int J Infect Dis 14:e184–e188PubMedCrossRefGoogle Scholar
  90. 90.
    Ryan D, Robards K, Prenzler PD et al (2011) Recent and potential developments in the analysis of urine: a review. Anal Chim Acta 684:17–29CrossRefGoogle Scholar
  91. 91.
    Meyer JS, Novak MA (2012) Hair cortisol: a novel biomarker of hypothalamic-pituitary-adrenocortical activity. Endocrinology 153:4120–4127PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Wosu AC, Valdimarsdóttir U, Shields AE et al (2013) Correlates of cortisol in human hair: implications for epidemiologic studies on health effects of chronic stress. Ann Epidemiol 23:797–811PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Gao W, Stalder T, Foley P et al (2013) Quantitative analysis of steroid hormones in human hair using a column-switching LC–APCI–MS/MS assay. J Chromatogr B 928:1–8CrossRefGoogle Scholar
  94. 94.
    Stalder T, Kirschbaum C (2012) Analysis of cortisol in hair: state of the art and future directions. Brain Behav Immun 26:1019–1029PubMedCrossRefGoogle Scholar
  95. 95.
    Gao W, Kirschbaum C, Grass J et al (2016) LCMS based analysis of endogenous steroid hormones in human hair. J Steroid Biochem Mol Biol 162:92–99PubMedCrossRefGoogle Scholar
  96. 96.
    Yang HZ, Lan J, Meng YJ et al (1998) A preliminary study of steroid reproductive hormones in human hair. J Steroid Biochem Mol Biol 67:447–450PubMedCrossRefGoogle Scholar
  97. 97.
    Cohen S, Doyle WJ, Skoner DP et al (1997) Social ties and susceptibility to the common cold. JAMA 277:1940–1944PubMedCrossRefGoogle Scholar
  98. 98.
    Cohen S, Doyle WJ, Turner R et al (2003) Sociability and susceptibility to the common cold. Psychol Sci 14:389–395PubMedCrossRefGoogle Scholar
  99. 99.
    Cohen S, Doyle WJ, Skoner DP (1999) Psychological stress, cytokine production, and severity of upper respiratory illness. Psychosom Med 61:175–180PubMedCrossRefGoogle Scholar
  100. 100.
    Cohen S (2004) Childhood socioeconomic status and host resistance to infectious illness in adulthood. Psychosom Med 66:553–558PubMedCrossRefGoogle Scholar
  101. 101.
    Phillips AC (2012) The vaccination model in psychoneuroimmunology research: a review. In: Yan Q (ed) Psychoneuroimmunology: methods and protocols. Humana Press, Totowa, NJ, pp 355–370CrossRefGoogle Scholar
  102. 102.
    Williamson S, Munro C, Pickler R et al (2012) Comparison of biomarkers in blood and saliva in health adults. Nurs Res Pract 2012:246178. CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Lim PW, Garssen J, Sandalova E (2016) Potential use of salivary markers for longitudinal monitoring of inflammatory immune responses to vaccination. Mediat Inflamm 2016:6958293CrossRefGoogle Scholar
  104. 104.
    Shattuck EC, Muehlenbein MP (2017) Human sickness behavior not expressed in response to the rabies vaccine. Am J Phys Anthropol 162(S64):294Google Scholar
  105. 105.
    McDade TW, Borja JB, Kuzawa CW et al (2015) C-reactive protein response to influenza vaccination as a model of mild inflammatory stimulation in the Philippines. Vaccine 33:2004–2008PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Muehlenbein MP, Alger J, Cogswell F et al (2005) The reproductive endocrine response to Plasmodium vivax infection in Hondurans. Am J Trop Med Hyg 73:178–187PubMedCrossRefGoogle Scholar
  107. 107.
    Gravlee CC (2005) Ethnic classification in Southeastern Puerto Rico: the cultural model of “color”. Soc Forces 83:949–970CrossRefGoogle Scholar
  108. 108.
    Alcántara C, Chen C-N, Alegría M (2014) Do post-migration perceptions of social mobility matter for Latino immigrant health? Soc Sci Med 101:94–106PubMedCrossRefGoogle Scholar
  109. 109.
    Cohen S, Alper CM, Doyle WJ et al (2008) Objective and subjective socioeconomic status and susceptibility to the common cold. Health Psychol 27:268–274PubMedCrossRefGoogle Scholar
  110. 110.
    Sturgeon JA, Arewasikporn A, Okun MA et al (2016) The psychosocial context of financial stress. Psychosom Med 78:134–143PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Liu B (2017) Many facets of sentiment analysis. In: Cambria E, Das D, Bandyopadhyay S, Feraco A (eds) A practical guide to sentiment analysis. Springer, New York, pp 11–41CrossRefGoogle Scholar
  112. 112.
    Pennebaker JW, Mehl MR, Niederhoffer KG (2003) Psychological aspects of natural language use: our words, our selves. Annu Rev Psychol 54:547–577PubMedCrossRefGoogle Scholar
  113. 113.
    Dunn KC, Neumann IB (2016) Undertaking discourse analysis for social research. University of Michigan Press, Ann Arbor, MICrossRefGoogle Scholar
  114. 114.
    Courtenay WH (2000) Constructions of masculinity and their influence on men’s well-being: a theory of gender and health. Soc Sci Med 50:1385–1401PubMedCrossRefGoogle Scholar
  115. 115.
    Charteris-Black J, Seale C (2009) Men and emotion talk: evidence from the experience of illness. Gender Lang 3:81–113CrossRefGoogle Scholar
  116. 116.
    Pletzer B, Petasis O, Ortner TM et al (2015) Interactive effects of culture and sex hormones on the sex role self-concept. Front Neurosci 9:240PubMedPubMedCentralGoogle Scholar
  117. 117.
    Willer R, Rogalin CL, Conlon B et al (2013) Overdoing gender: a test of the masculine overcompensation thesis. Am J Sociol 118:980–1022CrossRefGoogle Scholar
  118. 118.
    García AR, Gurven M, Blackwell AD (2017) A matter of perception: perceived socio-economic status and cortisol on the island of Utila, Honduras. Am J Hum Biol 34:e23031CrossRefGoogle Scholar
  119. 119.
    Sorensen MV, Snodgrass JJ, Leonard WR et al (2009) Lifestyle incongruity, stress and immune function in indigenous Siberians: the health impacts of rapid social and economic change. Am J Phys Anthropol 138:62–69PubMedCrossRefGoogle Scholar
  120. 120.
    Heald AH, Patel J, Anderson SG et al (2007) Migration is associated with lower total, but not free testosterone levels in South Asian men. Clin Endocrinol 67:651–655CrossRefGoogle Scholar
  121. 121.
    Lagana K (2003) Come bien, camina y no se preocupe—eat right, walk, and do not worry: selective biculturalism during pregnancy in a Mexican American community. J Transcult Nurs 14:117–124PubMedCrossRefGoogle Scholar
  122. 122.
    Rosenberg N, Daviglus ML, DeVon HA et al (2017) The association between parity and inflammation among Mexican-American women of reproductive age varies by acculturation level: results of the National Health and Nutrition Examination Survey (1999–2006). Womens Health Issues 27:485–492PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Fleuriet KJ, Sunil TS (2014) Perceived social stress, pregnancy-related anxiety, depression and subjective social status among pregnant Mexican and Mexican American women in South Texas. J Health Care Poor Underserved 25:546–561PubMedCrossRefGoogle Scholar
  124. 124.
    Garruto RM, Little MA, James GD et al (1999) Natural experimental models: the global search for biomedical paradigms among traditional, modernizing, and modern populations. Proc Natl Acad Sci U S A 96:10536–10543PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AnthropologyUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations