Intersections Between Neuroimmune and Microbiota

  • Colette G. Ngo Ndjom
  • Xavier F. Gonzalez
  • Harlan P. JonesEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1781)


Multidiscipline-based research holds promise toward revealing complex mechanisms that determine health and disease. For decades, scientists have conducted studies defining the relationships between neuroendocrine and immune function culminating into the discipline of psychoneuroimmunology (PNI). In addition, the discipline of microbial endocrinology has similarly enhanced our understanding of disease processes. With an increase in genetic-based sequencing technologies, the convergence of neuroendocrine-immunological-microbial research is expected to significantly further such knowledge needed for medical discoveries. In this chapter, we provide a review of the current findings that support the conceptual framework linking microbiota, immunity, and neuroendocrine disciplines.

Key words

Microbiota Neuroendocrine Stress Immunity Health 



The authors would like to thank the Department of Microbiology, Immunology and Genetics for financial support and resources necessary for the completion of this work. The authors would also like to thank Ms. Mira Bakine for her contribution in figure development for this review.


  1. 1.
    Glaser R, Kiecolt-Glaser J (2005) How stress damages immune system and health. Discov Med 5:165–169PubMedGoogle Scholar
  2. 2.
    Kiecolt-Glaser JK (2009) Psychoneuroimmunology: psychology’s gateway to the biomedical future. Perspect Psychol Sci 4:367–369PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Straub RH, Cutolo M (2017) Psychoneuroimmunology-developments in stress research. Wien Med WochenschrPubMedCrossRefGoogle Scholar
  4. 4.
    Dinan TG, Cryan JF (2017) Microbes, immunity, and behavior: psychoneuroimmunology meets the microbiome. Neuropsychopharmacology 42:178–192PubMedCrossRefGoogle Scholar
  5. 5.
    Lyte M (2016) Microbial endocrinology: an ongoing personal journey. Adv Exp Med Biol 874:1–24PubMedGoogle Scholar
  6. 6.
    Freestone PP, Lyte M (2008) Microbial endocrinology: experimental design issues in the study of interkingdom signalling in infectious disease. Adv Appl Microbiol 64:75–105PubMedCrossRefGoogle Scholar
  7. 7.
    Lyte M (1993) The role of microbial endocrinology in infectious disease. J Endocrinol 137:343–345PubMedCrossRefGoogle Scholar
  8. 8.
    Ashley NT, Demas GE (2017) Neuroendocrine-immune circuits, phenotypes, and interactions. Horm Behav 87:25–34PubMedCrossRefGoogle Scholar
  9. 9.
    Schubert C (2014) Psychoneuroimmunology of the life span: impact of childhood stress on immune dysregulation and inflammatory disease in later life. Psychother Psychosom Med Psychol 64:171–180PubMedGoogle Scholar
  10. 10.
    Freestone P, Lyte M (2010) Stress and microbial endocrinology: prospects for ruminant nutrition. Animal 4:1248–1257PubMedCrossRefGoogle Scholar
  11. 11.
    Lyte M (1992) The role of catecholamines in gram-negative sepsis. Med Hypotheses 37:255–258PubMedCrossRefGoogle Scholar
  12. 12.
    Lyte M (2004) Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol 12:14–20PubMedCrossRefGoogle Scholar
  13. 13.
    Lyte M (2014) The effect of stress on microbial growth. Anim Health Res Rev 15:172–174PubMedCrossRefGoogle Scholar
  14. 14.
    Lofgren JL, Whary MT, Ge Z, Muthupalani S, Taylor NS, Mobley M, Potter A, Varro A, Eibach D, Suerbaum S, Wang TC, Fox JG (2011) Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology 140:210–220PubMedCrossRefGoogle Scholar
  15. 15.
    Lo CW, Lai YK, Liu YT, Gallo RL, Huang CM (2011) Staphylococcus aureus hijacks a skin commensal to intensify its virulence: immunization targeting beta-hemolysin and CAMP factor. J Invest Dermatol 131:401–409PubMedCrossRefGoogle Scholar
  16. 16.
    Dashper SG, Seers CA, Tan KH, Reynolds EC (2011) Virulence factors of the oral spirochete Treponema denticola. J Dent Res 90:691–703PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Zhou Y, Lin P, Li Q, Han L, Zheng H, Wei Y, Cui Z, Ni Y, Guo X (2010) Analysis of the microbiota of sputum samples from patients with lower respiratory tract infections. Acta Biochim Biophys Sin Shanghai 42:754–761PubMedCrossRefGoogle Scholar
  18. 18.
    Walk ST, Blum AM, Ewing SA, Weinstock JV, Young VB (2010) Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflamm Bowel Dis 16:1841–1849PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Stecher B, Chaffron S, Kappeli R, Hapfelmeier S, Freedrich S, Weber TC, Kirundi J, Suar M, McCoy KD, von Mering C, Macpherson AJ, Hardt WD (2010) Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog 6:e1000711PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Sokol H, Vasquez N, Hoyeau-Idrissi N, Seksik P, Beaugerie L, Lavergne-Slove A, Pochart P, Marteau P (2010) Crypt abscess-associated microbiota in inflammatory bowel disease and acute self-limited colitis. World J Gastroenterol 16:583–587PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    O’Keefe SJ (2010) Tube feeding, the microbiota, and Clostridium difficile infection. World J Gastroenterol 16:139–142PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mallozzi M, Viswanathan VK, Vedantam G (2010) Spore-forming Bacilli and Clostridia in human disease. Future Microbiol 5:1109–1123PubMedCrossRefGoogle Scholar
  23. 23.
    Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N, Benecke A, Van Maele L, Sirard JC, Mueller AJ, Heikenwalder M, Macpherson AJ, Strugnell R, von Mering C, Hardt WD (2010) The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog 6:e1001097PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Koyanagi T, Sakamoto M, Takeuchi Y, Ohkuma M, Izumi Y (2010) Analysis of microbiota associated with peri-implantitis using 16S rRNA gene clone library. J Oral Microbiol 2Google Scholar
  25. 25.
    Montagner F, Gomes BP, Kumar PS (2010) Molecular fingerprinting reveals the presence of unique communities associated with paired samples of root canals and acute apical abscesses. J Endod 36:1475–1479PubMedCrossRefGoogle Scholar
  26. 26.
    Bokulich NA, Rideout JR, Mercurio WG, Shiffer A, Wolfe B, Maurice CF, Dutton RJ, Turnbaugh PJ, Knight R, Caporaso JG (2016) mockrobiota: a public resource for microbiome bioinformatics benchmarking. mSystems 1(5)Google Scholar
  27. 27.
    Han M, Yang P, Zhou H, Li H, Ning K (2016) Metagenomics and single-cell omics data analysis for human microbiome research. Adv Exp Med Biol 939:117–137PubMedCrossRefGoogle Scholar
  28. 28.
    Lyte M, Ernst S (1992) Catecholamine induced growth of gram negative bacteria. Life Sci 50:203–212PubMedCrossRefGoogle Scholar
  29. 29.
    Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, Koga Y, Sudo N (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303:G1288–G1295PubMedCrossRefGoogle Scholar
  30. 30.
    Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, O’Connor G, Grati M, Mittal J, Yan D, Eshraghi AA, Deo SK, Daunert S, Liu XZ (2017) Neurotransmitters: the critical modulators regulating gut-brain Axis. J Cell Physiol 232:2359–2372PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ney DM, Murali SG, Stroup BM, Nair N, Sawin EA, Rohr F, Levy HL (2017) Metabolomic changes demonstrate reduced bioavailability of tyrosine and altered metabolism of tryptophan via the kynurenine pathway with ingestion of medical foods in phenylketonuria. Mol Genet Metab 121:96–103PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Hegde M, Wood TK, Jayaraman A (2009) The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA14 virulence through the las quorum-sensing pathway. Appl Microbiol Biotechnol 84:763–776PubMedCrossRefGoogle Scholar
  33. 33.
    Nietfeld JC, Yeary TJ, Basaraba RJ, Schauenstein K (1999) Norepinephrine stimulates in vitro growth but does not increase pathogenicity of salmonella choleraesuis in an in vivo model. Adv Exp Med Biol 473:249–260PubMedCrossRefGoogle Scholar
  34. 34.
    Anderson MT, Armstrong SK (2006) The Bordetella bfe system: growth and transcriptional response to siderophores, catechols, and neuroendocrine catecholamines. J Bacteriol 188:5731–5740PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Cogan TA, Thomas AO, Rees LE, Taylor AH, Jepson MA, Williams PH, Ketley J, Humphrey TJ (2007) Norepinephrine increases the pathogenic potential of campylobacter jejuni. Gut 56:1060–1065PubMedCrossRefGoogle Scholar
  36. 36.
    Everest P (2007) Stress and bacteria: microbial endocrinology. Gut 56:1037–1038PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Moreira CG, Sperandio V (2016) The epinephrine/norepinephrine/autoinducer-3 Interkingdom signaling system in Escherichia coli O157:H7. Adv Exp Med Biol 874:247–261PubMedGoogle Scholar
  38. 38.
    Dowd SE (2007) Escherichia coli O157:H7 gene expression in the presence of catecholamine norepinephrine. FEMS Microbiol Lett 273:214–223PubMedCrossRefGoogle Scholar
  39. 39.
    Nakano M, Takahashi A, Sakai Y, Kawano M, Harada N, Mawatari K, Nakaya Y (2007) Catecholamine-induced stimulation of growth in Vibrio species. Lett Appl Microbiol 44:649–653PubMedCrossRefGoogle Scholar
  40. 40.
    Waldor MK, Sperandio V (2007) Adrenergic regulation of bacterial virulence. J Infect Dis 195:1248–1249PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sandrini S, Alghofaili F, Freestone P, Yesilkaya H (2014) Host stress hormone norepinephrine stimulates pneumococcal growth, biofilm formation and virulence gene expression. BMC Microbiol 14:180PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gonzales XF, Castillo-Rojas G, Castillo-Rodal AI, Tuomanen E, Lopez-Vidal Y (2013) Catecholamine norepinephrine diminishes lung epithelial cell adhesion of Streptococcus Pneumoniae by binding iron. Microbiology 159:2333–2341PubMedCrossRefGoogle Scholar
  43. 43.
    Baldwin HE, Bhatia ND, Friedman A, Eng RM, Seite S (2017) The role of cutaneous microbiota harmony in maintaining a functional skin barrier. J Drugs Dermatol 16:12–18PubMedGoogle Scholar
  44. 44.
    Maguire M, Maguire G (2017) The role of microbiota, and probiotics and prebiotics in skin health. Arch Dermatol Res 309:411–421PubMedCrossRefGoogle Scholar
  45. 45.
    Zouboulis CC, Picardo M, Ju Q, Kurokawa I, Torocsik D, Biro T, Schneider MR (2016) Beyond acne: current aspects of sebaceous gland biology and function. Rev Endocr Metab Disord 17:319–334PubMedCrossRefGoogle Scholar
  46. 46.
    Ali MF, Soto A, Knoop FC, Conlon JM (2001) Antimicrobial peptides isolated from skin secretions of the diploid frog, Xenopus tropicalis (Pipidae). Biochim Biophys Acta 1550:81–89PubMedCrossRefGoogle Scholar
  47. 47.
    Beasley FC, Marolda CL, Cheung J, Buac S, Heinrichs DE (2011) Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by Staphyloferrin A, Staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence. Infect Immun 79:2345–2355PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Brotman RM, Ravel J, Cone RA, Zenilman JM (2010) Rapid fluctuation of the vaginal microbiota measured by Gram stain analysis. Sex Transm Infect 86:297–302PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Cocco JF, Antonetti JW, Burns JL, Heggers JP, Blackwell SJ (2010) Characterization of the nasal, sublingual, and oropharyngeal mucosa microbiota in cleft lip and palate individuals before and after surgical repair. Cleft Palate Craniofac J 47:151–155PubMedCrossRefGoogle Scholar
  50. 50.
    Fardini Y, Chung P, Dumm R, Joshi N, Han YW (2010) Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection. Infect Immun 78:1789–1796PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Spear GT, Sikaroodi M, Zariffard MR, Landay AL, French AL, Gillevet PM (2008) Comparison of the diversity of the vaginal microbiota in HIV-infected and HIV-uninfected women with or without bacterial vaginosis. J Infect Dis 198:1131–1140PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Tada A, Hanada N (2010) Opportunistic respiratory pathogens in the oral cavity of the elderly. FEMS Immunol Med Microbiol 60:1–17PubMedCrossRefGoogle Scholar
  53. 53.
    Freestone PP, Sandrini SM, Haigh RD, Lyte M (2008) Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol 16:55–64PubMedCrossRefGoogle Scholar
  54. 54.
    Salton MR (1964) Requirement of dihydroxyphenols for the growth of micrococcus lysodeikticus in synthetic media. Biochim Biophys Acta 86:421–422PubMedCrossRefGoogle Scholar
  55. 55.
    Shearer N, Walton NJ (2016) Dietary catechols and their relationship to microbial endocrinology. Adv Exp Med Biol 874:101–119PubMedGoogle Scholar
  56. 56.
    Neilands JB (1984) Siderophores of bacteria and fungi. Microbiol Sci 1:9–14PubMedGoogle Scholar
  57. 57.
    Lee JY, Janes BK, Passalacqua KD, Pfleger BF, Bergman NH, Liu H, Hakansson K, Somu RV, Aldrich CC, Cendrowski S, Hanna PC, Sherman DH (2007) Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. J Bacteriol 189:1698–1710PubMedCrossRefGoogle Scholar
  58. 58.
    Koppisch AT, Browder CC, Moe AL, Shelley JT, Kinkel BA, Hersman LE, Iyer S, Ruggiero CE (2005) Petrobactin is the primary siderophore synthesized by Bacillus anthracis str. Sterne under conditions of iron starvation. Biometals 18:577–585PubMedCrossRefGoogle Scholar
  59. 59.
    Hickford SJ, Kupper FC, Zhang G, Carrano CJ, Blunt JW, Butler A (2004) Petrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonoclasticus. J Nat Prod 67:1897–1899PubMedCrossRefGoogle Scholar
  60. 60.
    Freestone PP, Haigh RD, Williams PH, Lyte M (2003) Involvement of enterobactin in norepinephrine-mediated iron supply from transferrin to enterohaemorrhagic Escherichia coli. FEMS Microbiol Lett 222:39–43PubMedCrossRefGoogle Scholar
  61. 61.
    Choi JM, Jo JY, Baik JW, Kim S, Kim CS, Jeong SM (2017) Risk factors and outcomes associated with a higher use of inotropes in kidney transplant recipients. Medicine (Baltimore) 96:e5820CrossRefGoogle Scholar
  62. 62.
    Freestone PP, Al-Dayan N, Lyte M (2016) Staphylococci, catecholamine inotropes and hospital-acquired infections. Adv Exp Med Biol 874:183–199PubMedGoogle Scholar
  63. 63.
    Lyte M, Ernst S (1993) Alpha and beta adrenergic receptor involvement in catecholamine-induced growth of gram-negative bacteria. Biochem Biophys Res Commun 190:447–452PubMedCrossRefGoogle Scholar
  64. 64.
    Freestone PP, Haigh RD, Lyte M (2007) Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiol 7:8PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Freestone PP, Haigh RD, Williams PH, Lyte M (1999) Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiol Lett 172:53–60PubMedCrossRefGoogle Scholar
  66. 66.
    Voigt B, Schweder T, Sibbald MJ, Albrecht D, Ehrenreich A, Bernhardt J, Feesche J, Maurer KH, Gottschalk G, van Dijl JM, Hecker M (2006) The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics 6:268–281PubMedCrossRefGoogle Scholar
  67. 67.
    Reissbrodt R, Rienaecker I, Romanova JM, Freestone PP, Haigh RD, Lyte M, Tschape H, Williams PH (2002) Resuscitation of salmonella enterica serovar typhimurium and enterohemorrhagic Escherichia coli from the viable but nonculturable state by heat-stable enterobacterial autoinducer. Appl Environ Microbiol 68:4788–4794PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Roberts A (2005) Bacteria in the mouth. Dent Update 32:134–136, 139–140, 142PubMedCrossRefGoogle Scholar
  69. 69.
    Lyte M, Frank CD, Green BT (1996) Production of an autoinducer of growth by norepinephrine cultured Escherichia coli O157:H7. FEMS Microbiol Lett 139:155–159PubMedCrossRefGoogle Scholar
  70. 70.
    Simard M, Hill LA, Lewis JG, Hammond GL (2015) Naturally occurring mutations of human corticosteroid-binding globulin. J Clin Endocrinol Metab 100:E129–E139PubMedCrossRefGoogle Scholar
  71. 71.
    Simard M, Hill LA, Underhill CM, Keller BO, Villanueva I, Hancock RE, Hammond GL (2014) Pseudomonas aeruginosa elastase disrupts the cortisol-binding activity of corticosteroid-binding globulin. Endocrinology 155:2900–2908PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Verbrugghe E, Boyen F, Van Parys A, Van Deun K, Croubels S, Thompson A, Shearer N, Leyman B, Haesebrouck F, Pasmans F (2011) Stress induced Salmonella Typhimurium recrudescence in pigs coincides with cortisol induced increased intracellular proliferation in macrophages. Vet Res 42:118PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Morris DJ, Ridlon JM (2017) Glucocorticoids and gut bacteria: “the GALF hypothesis” in the metagenomic era. Steroids 125:1–13PubMedCrossRefGoogle Scholar
  74. 74.
    Ngo Ndjom CG, Kantor LV, Jones HP (2017) CRH affects the phenotypic expression of sepsis-associated virulence factors by streptococcus pneumoniae serotype 1 in vitro. Front Cell Infect Microbiol 7:263PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Weinstein LI, Revuelta A, Pando RH (2015) Catecholamines and acetylcholine are key regulators of the interaction between microbes and the immune system. Ann N Y Acad Sci 1351:39–51PubMedCrossRefGoogle Scholar
  76. 76.
    Stanaszek PM, Snell JF, O’Neill JJ (1977) Isolation, extraction, and measurement of acetylcholine from Lactobacillus plantarum. Appl Environ Microbiol 34:237–239PubMedPubMedCentralGoogle Scholar
  77. 77.
    Pandey S, Sree A, Sethi DP, Kumar CG, Kakollu S, Chowdhury L, Dash SS (2014) A marine sponge associated strain of Bacillus subtilis and other marine bacteria can produce anticholinesterase compounds. Microb Cell Factories 13:24CrossRefGoogle Scholar
  78. 78.
    Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T, Kato T, Kawashima K (2003) Evolutional study on acetylcholine expression. Life Sci 72:1745–1756PubMedCrossRefGoogle Scholar
  79. 79.
    Yamada T, Fujii T, Kanai T, Amo T, Imanaka T, Nishimasu H, Wakagi T, Shoun H, Kamekura M, Kamagata Y, Kato T, Kawashima K (2005) Expression of acetylcholine (ACh) and ACh-synthesizing activity in Archaea. Life Sci 77:1935–1944PubMedCrossRefGoogle Scholar
  80. 80.
    Costa MM, Silva AS, Paim FC, Franca R, Dornelles GL, Thome GR, Serres JD, Schmatz R, Spanevello RM, Goncalves JF, Schetinger MR, Mazzanti CM, Lopes ST, Monteiro SG (2012) Cholinesterase as inflammatory markers in a experimental infection by Trypanosoma evansi in rabbits. An Acad Bras Cienc 84:1105–1113PubMedCrossRefGoogle Scholar
  81. 81.
    da Silva AS, Monteiro SG, Goncalves JF, Spanevello R, Oliveira CB, Costa MM, Jaques JA, Morsch VM, Schetinger MR, Mazzanti CM, Lopes ST (2011) Acetylcholinesterase activity and lipid peroxidation in the brain and spinal cord of rats infected with Trypanosoma evansi. Vet Parasitol 175:237–244PubMedCrossRefGoogle Scholar
  82. 82.
    Wolkmer P, da Silva CB, Paim FC, Da Silva AS, Tavares KC, Lazzarotto CR, Palma HE, Thome GR, Miletti LC, Schetinger MR, Lopes ST, Mazzanti CM (2012) Biochemistry detection of acetylcholinesterase activity in Trypanosoma evansi and possible functional correlations. Exp Parasitol 132:546–549PubMedCrossRefGoogle Scholar
  83. 83.
    Bolino CM, Bercik P (2010) Pathogenic factors involved in the development of irritable bowel syndrome: focus on a microbial role. Infect Dis Clin N Am 24:961–975, ixCrossRefGoogle Scholar
  84. 84.
    Craig OF, Quigley EM (2010) Bacteria, genetics and irritable bowel syndrome. Expert Rev Gastroenterol Hepatol 4:271–276PubMedCrossRefGoogle Scholar
  85. 85.
    Fox JG, Feng Y, Theve EJ, Raczynski AR, Fiala JL, Doernte AL, Williams M, McFaline JL, Essigmann JM, Schauer DB, Tannenbaum SR, Dedon PC, Weinman SA, Lemon SM, Fry RC, Rogers AB (2010) Gut microbes define liver cancer risk in mice exposed to chemical and viral transgenic hepatocarcinogens. Gut 59:88–97PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Fujimura KE, Slusher NA, Cabana MD, Lynch SV (2010) Role of the gut microbiota in defining human health. Expert Rev Anti-Infect Ther 8:435–454PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Ganal-Vonarburg SC, Fuhrer T, Gomez de Aguero M (2017) Maternal microbiota and antibodies as advocates of neonatal health. Gut Microbes 8(5):479–485PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Smith PD, Smythies LE, Shen R, Greenwell-Wild T, Gliozzi M, Wahl SM (2011) Intestinal macrophages and response to microbial encroachment. Mucosal Immunol 4:31–42PubMedCrossRefGoogle Scholar
  89. 89.
    Okada H, Kuhn C, Feillet H, Bach JF (2010) The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol 160:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Martin R, Nauta AJ, Ben Amor K, Knippels LM, Knol J, Garssen J (2010) Early life: gut microbiota and immune development in infancy. Benef Microbes 1:367–382PubMedCrossRefGoogle Scholar
  91. 91.
    Belkaid Y, Harrison OJ (2017) Homeostatic immunity and the microbiota. Immunity 46:562–576PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Luo A, Leach ST, Barres R, Hesson LB, Grimm MC, Simar D (2017) The microbiota and epigenetic regulation of T helper 17/regulatory T cells: in search of a balanced immune system. Front Immunol 8:417PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lloyd CM, Marsland BJ (2017) Lung homeostasis: influence of age, microbes, and the immune system. Immunity 46:549–561PubMedCrossRefGoogle Scholar
  94. 94.
    Costa MC, Santos JR, Ribeiro MJ, Freitas GJ, Bastos RW, Ferreira GF, Miranda AS, Arifa RD, Santos PC, Martins Fdos S, Paixao TA, Teixeira AL, Souza DG, Santos DA (2016) The absence of microbiota delays the inflammatory response to Cryptococcus gattii. Int J Med Microbiol 306:187–195PubMedCrossRefGoogle Scholar
  95. 95.
    Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ, Wang S, Mora JR, Umesaki Y, Mathis D, Benoist C, Relman DA, Kasper DL (2012) Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149:1578–1593PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Fransen F, van Beek AA, Borghuis T, Meijer B, Hugenholtz F, van der Gaast-de Jongh C, Savelkoul HF, de Jonge MI, Faas MM, Boekschoten MV, Smidt H, El Aidy S, de Vos P (2017) The impact of gut microbiota on gender-specific differences in immunity. Front Immunol 8:754PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG, Ortiz-Lopez A, Yanortsang TB, Yang L, Jupp R, Mathis D, Benoist C, Kasper DL (2017) Mining the human gut microbiota for immunomodulatory organisms. Cell 168(928–943):e911Google Scholar
  98. 98.
    Chu H, Mazmanian SK (2013) Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol 14:668–675PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    McDermott AJ, Huffnagle GB (2014) The microbiome and regulation of mucosal immunity. Immunology 142:24–31PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Hansen JD, Vojtech LN, Laing KJ (2011) Sensing disease and danger: a survey of vertebrate PRRs and their origins. Dev Comp Immunol 35:886–897PubMedCrossRefGoogle Scholar
  101. 101.
    Salzman NH (2011) Microbiota-immune system interaction: an uneasy alliance. Curr Opin Microbiol 14:99–105PubMedCrossRefGoogle Scholar
  102. 102.
    Brown RL, Clarke TB (2017) The regulation of host defences to infection by the microbiota. Immunology 150:1–6PubMedCrossRefGoogle Scholar
  103. 103.
    Bailey MT (2016) Psychological stress, immunity, and the effects on indigenous microflora. Adv Exp Med Biol 874:225–246PubMedGoogle Scholar
  104. 104.
    Bailey MT, Dowd SE, Parry NM, Galley JD, Schauer DB, Lyte M (2010) Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect Immun 78:1509–1519PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Colette G. Ngo Ndjom
    • 1
  • Xavier F. Gonzalez
    • 2
  • Harlan P. Jones
    • 1
    Email author
  1. 1.Department of Microbiology, Immunology and Genetics, University of North Texas Health Science CenterFort WortUSA
  2. 2.Department of Biomedical SciencesTexas A&M University Corpus ChristiCorpus ChristiUSA

Personalised recommendations